Choose Language Hide Translation Bar

Utilizing JMP Data Analytics in the Product Development of Adhesives and Sealants - (2023-US-30MP-1461)

Effective data analytics is critical for the success of product development. Product development processes for adhesives and sealants involve data analytics for tasks needed at various project phases. Too many formulation chemists still depend on Excel for daily data recording, formulating, and analysis. While some chemists use JMP for statistical analysis and experimental design, JMP’s powerful and versatile data analytics should be used more universally for many daily tasks in product development. When shown how widely JMP can be used, more formulation chemists should see the benefits of adopting JMP as a daily tool.

 

This presentation shares examples of how easily JMP can be used in daily data analytics, in addition to the statistical analysis and DOE that most chemists use. A variety of examples are given, including handling data from literature and patent searches, analysis of raw materials, and a variety of formulation-related tasks such as formula stoichiometry calculation, mixing volume balance, data recording, and in tabulate/graph analysis. In addition, this presentation demonstrates how JMP is used for product selection, application trouble shooting, failure mode analysis, DOE, and more.

 

 

Hi ,  this  is  Stone  Cheng ,

I 'm  a  technical  director   in  Henkel  Corporation .

I 've  been  using  JMP  for  more  than five  years  in  product  development .

Today  I 'm  happy  to  share

with  our  best  practice  in  utilizing  JMP  data  analytics

in  product  development of  adhesive  and  sealants .

My  presentation  has  two  parts .

The  part  one  is  application  gallery

where  JMP  used  in  various  stage   in  product  development  will  be  discussed,

and  in  part  two  I  will  focus  on  using  JMP

as  a  formulation  worksheet  with  the  demonstration .

In  my  organization ,

folks  either  have  not  heard  of  JMP

or  have  an  impression  that  JMP   is  an advanced  DOE  software .

For  the  latter,  it  is  true , but  it 's  not  the  whole  truth .

Since  there  are  other   DOE  software  options ,

it  is  hard  to  persuade  folks

to  switch  away from  tool  they  are  familiar  with .

JMP  is  an  excellent  all- around  data  analytics  tool .

To  promote  JMP  adoption ,

we  need  example  to  demonstrate   its  power  in  the  data  analytics .

In  my  presentation ,

the  example  are  taken  from  my  experience in  adhesive  and  sealants .

About  Henkel .

Henkel  is  a  22- billion  enterprise   with  two  business  unit :

adhesive  technology

and  consumer  brand  of  laundry , home,  and  beauty  care .

I 'm  in  the  adhesive  technology  unit .

We  are  global  adhesive  leader serving  800  industries

with  more  than  20 ,000  products .

Let 's  start  with  case  number  1 .

One  customer  has  a  need ,

they  may  call  a  service  center asking  for  product  recommendation .

For  example ,  a  customer  may  need   a  room  temperature  adhesive  hook

with  the  shear  strength  between  1 ,500 -3 ,000

and  a  work  life  between  15 -30  minutes

and  in  the  package  of  10 .

What  we  need   is  a  searchable  product  selected  guide ,

what  is  showing  in  our  case  1 .

Once  the  product  information  are  entered  into  the  JMP  table ,

one  can  use  the  tabulate   and  local  data  filter

to  downselect  the  product

based  on  the  customer  requirement as  shown  in  here .

This  is  a  very,  very  powerful  tool in  the  preformation  stage .

My  team  has  been  applying  this  tool to  search  for  formulation ,

pattern ,  literature   and  the  raw  material  specifications .

In  case  number  2 ,

multivariate  analysis is  applied  to  a  silver  filler ,

which  are  used in  making  conductive  adhesive .

From  multivariable  analysis ,

if  we  focus  on  the  surface  area ,

it  has  a  moderate  negative  correlation with  the  tap  density

and  then  it  has  a  stronger positive  correlation  to  lubricant  amount

as  measure   at  the  weight  loss  at  530  AC .

There  is  a  graphical  way  here   and  it 's  a  table  format  here .

With  this  analogy ,

chemistry  can  select  the  right silver  package  for  the  application .

Case  3  is  the  literature .

Literature  is  a  great  place  for  learning the  chemistry  and  formulation

and  this  particular  cited  literature

illustrates  how  epoxy  tensile  strength

are  affected  by  the  mixture   of  two  amine  hardener .

The  results  are  described qualitatively  by  a  table

and  a  graph   of  the  stress  train  curve  here .

For  formulator   quantitative  description  is  good ,

but  learning  via  quantitative  modeling

is  even  better  for  the  prediction  purpose .

In  case  number  3 ,

we  take  the  literature  data

and  then  create   a  two -factor  column  right  here .

These  are  the  epoxy /amine  stoichiometry , or  we  call  it  the  index .

The  other  factor  is  the  fraction

of  one  of  the  amine  PAE to  the  total  amine  fraction .

With  the  Fit  Model  platform, and  we  use  the  ISM  model ,

it  showed  that  the  quadratic  effect of  the  index,

together  with  two  main  effects, are  all  significant .

The  prediction  provider and  the  contour  profiler

are  used  to  quantify  the  learning and  give  the  prediction .

In  case  number  4 ,

my  group  was  assigned to  support  a  technology  platform

that  include  about  30  products .

Since  we  are  not  involved  in  the  original formulation  development ,

how  to  study  the  formulation  family in  this  case  is  not  trivial .

Looking  at  a  big  Excel  table

with  all  the  formulation  certainly is  not  effective  either .

Case  number  4  is  the  example of  addressing  this  challenge .

I  select  the  three   top  most  used  ingredient

in  these  29  formulation :

monomer  1 ,  2,  and  then  oligomer .

Then  by  using  the  hierarchical  clustering  analysis  right  here ,

right  here  our  formula  was  identified  to  have  very ,  very  small  distance

assumed  right  here ,

implying  that  they  are  in  cross  related .

Actually  they  are  only  different

in  the  photo  initiator   for  different  wavelength  in  this  case .

We  can  add  more  ingredients  one  by  one in  this  hierarchical  clustering

and  then  learn  the  formulation  family by  using  this  method .

Most  of  the  chemist  analyze the  formulation  performance  in  Excel .

Case  number  5  is  a  JMP  tabulate that  has  the  same  data  format  as  Excel .

Basically ,   various  information  of  a  formula

are  displaced  in  the  same  column .

Like  what  you  see  here has  a  heading has  a  recipe ,

has  a  processing  material  characteristic, and  all  the  results .

To  create  such  data  structure ,

we  need  to  enter  data  in  JMP  table in  a  special  format

and  that  will  be  discussed  in  detail  in  part  two  of  my  presentation .

Case  6  is  a  silicone  study   involved  23  formulations

and  more  than  10  measurement  property .

It  is  quite  overwhelming  trying  to  analyze the  raw  data  in  such  big  system .

We  first  construct  a  series  of  graph

with  a  property  retention  in  Y and  then  the  initial  property  in  X .

For  example ,   if  you  look  at  the  first  graph  here ,

the  adhesion  retention  is  in  Y and  initial  adhesions  in  X .

We  also  give  the  reference  line , acceptance  line  for  each  axis .

When  a  formulation  is  selected , for  example ,  I  choose  this  point ,

they  are  in  the  quadrant  with  acceptable initial  adhesion  and  retention ,

then  all  its  associate  property   such  as  the  tensile  strength ,

elongation ,  hardness ,  all  show  up ,

also  formulation   all  show  up  at  the  same  time ,

these  are  all  thanks  to  automatic  highlight .

This  is  all  thanks   to  JMP  dynamic  link  capability .

Visualization  analysis in  such  a  way  is  very  effective

for  chemists  to  know  the  overall behavior  of  this  system .

In  polymer  science ,

we  measure  the  modulus  of  polymer  as  function  of  the  temperature

with  an  instrument  called dynamic  mechanical  analyzer ,  DMA .

DMA  data  has  a  temperature  modulus

and  then  attend  delta   are  typically  transferred  to  Excel

in  a  wide  format  for  plotting .

To  overlay  several  DMA  curve   for  comparison  it  is  durable  in  Excel ,

but  it 's  not  a  trivial  effort .

In  case  number  7 ,   we  stack  74  DMA  results  together

and  by  using  the  graph  builder ,

we  can  compare  DMA  results   very ,  very  quickly  just  by  clicking .

I  cannot  imagine  doing  the  same  in  Excel that  has  a  222  column .

It 's  basically  74  sample  times  3  signal  per  sample .

It 's  going  to  be  very  difficult to  handle  in  Excel  environment .

A  graph  builder  is  excellent  in  turning

a  very  complicated  graph  seen  in  Excel into  a  visually  digestible  analysis .

In  case  number  8 , the  needle  pull  strength

is  illustrated  in  graph  builder  using  four  variable .

We  have  eight  adhesive  on  the  top ,

we  have  three  different  radiation  system on  the  Y  here ,

and  we  also  have  a  four  radiation  time

and  then  two  needle  hub  combination .

See  how  easy   it  is  to  understand  this  JMP  graph

as  compared  to  the Excel  graph  right  here .

Good .

In  case  number  9 ,

we  are  conducting  accelerated  aging  study for  four  epoxy  prototype  formulation

by  measuring  their  initial  adhesion

on  three  substrate and  with  a  three  replica .

The  aging  condition   are  two  different  temperature

and  then  eight  week  aging  time  with  two  weeks  testing  interval .

This  aging  design  and  the  data   was  initially  recorded  in  Excel

and  we  converted  the  Excel  data  into  JMP  table  with  seven  column ,

seven  column  only

and  the  stack  format   and  then  we  make  a  graph .

You  will  agree  that  the  visualization in  JMP  graph  builder  in  this  case

is  much  easier   to  see  the  aging  performance

than  looking  at  the  busy  Excel  table  here .

In  formulation  stage ,  we  frequently need  to  optimize  composition .

Case  number  10  is  example

where  two  catalysts  in  polyurethane   are  optimized  with  the  DOE  design .

The  factor  are :  catalyst  ratio and  the  catalyst  total  amount .

There  is  a  10 -run  face -center central  composite  design ,

the  predictor  provider  indicating   that  the  catalyst  total  amount  factor

has  a  long  linear  effect  on  the  work  life .

The  white  area  in  the  contour  profiler

is  actually  the  suite  design  space  which  desire  work  life .

In  this  case ,  20 -28 .

It  is  important  for  chemistry  to  select

this  green  highlighted  white  area for  better  production  robustness

than  the  area   [inaudible 00:12:10]  in  blue ,

it  has  a  higher  tolerance   for  the  amount  change  there

just  in  case  operator  makes some  minor  mistake .

That 's  why  it  has  a  better production  robustness .

We  routinely  see  chemistry  perform

statistics  analysis  of  adhesion  data  like  what  you  see  here ,

but  we  hardly  see  anybody  presenting

the  results   about  the  failure  mode  analysis .

In  JMP  the  failure  mode  analysis can  be  performed  in  two  places .

One  is  in  the  contingency  analysis  in  Y  by  X  platform

and  the  second  one  is  using  the  graph  builder .

The  case  number  11  is  the  example

applying  to  the  silicone  sealant

where  the  failure  mode  change  before  and  after  high  temperature  aging ,

before  and  after  is  clearly  shown .

Clearly  shown ,

Beside  a  good  adhesion ,

adhesive  rheology  will  need  to  be  formulated

so  that  it  can  be   effectively  applied  to  the  substrate .

We  have  a  project  to  develop  a  seam  sealant  to  protect  the  metal  joint

by  spraying  process .

Case  number  12  is  the  example that  illustrating  the  complication

of  spraying  process  with  respect to  the  sealant  viscosity  variation .

We  have  three  spraying  variable .

They  are  the  pressure ,  nozzle  type , and  then  the  head  travel  speed

and  then  we  have  one  material  factor  in  this  case  is  the  viscosity .

Initially ,  we  plan  the  experiment  in  factorial  DOE  fashion ,

but  one  of  the  factor ,

the  sparing  pressure   are  very  very  hard  to  control .

We  end  up  performing  regression   of  the  40  round  with  ISM  model

using  the  strain  width   and  strain  thickness  as  the  response .

We  get  a  good  model  with  R -squared  about  0 .91  for  width

and  0 .81  for  the  thickness .

The  modeling  result  tell  us that  the  spraying  condition

will  need  to  be  adjusted   dependent  on  the  sealant  viscosity .

This  is  illustrated  in  this  prediction  profile  here .

Each  processing  parameter

has  their  own  machine  limit and  also  desirable  operation  limit .

If  this  predicted  processing  variable are  outside  those  limits ,

then  the  chemist  will  need  to  redesign

formulation  reality and  making  sure  that  manufacturing

has  the  processing  capability to  meet  the  viscosity  requirement .

This  example  show  that  the  formulation  design

and  application  constraint  will  need  to  be  considered  side  by  side

and  JMP  is  actually  a  very  good  tool in  facilitating  this  type  of  study .

Case  number  13  is  example  that  JMP

is  used  to  handle  huge instrumentation  data  sets .

In  testing  thermal  interface  material ,

the  temperature  at  a  different  location and  the  power  consumption  data

are  collected  and  then  uploaded  to  the  JMP .

Once  the  data  are  in  JMP  table ,

visualization  of  the  data and  data  analysis  of  data  set

as  much  as  500 ,000  row

are  still  very  manageable  and  has  a  fast  response .

That  means  the  geometry  actually  can be  used  to  handle  instrumentation  data .

We  have  a  project  to  apply  adhesive to  software  by  the  sensor  printing

and  this  application  is  challenging with  pinhole  defect  issue .

Process  engineer  changed   six  processing  variable  randomly

and  then  collect  21  wrong  results .

His  data  analysis   did  not  reveal  any  special  trend ,

so  the  JMP  was  then  used for  the  troubleshooting  in  this  case

and  the  prediction  partition  analysis  has  identified  factor  F

as  the  key  factor .

Later  on  we  apply the  predictor  screening  analysis

and  then  identify  additional  factor  D that  need  a  further  investigation .

For  JMP  training , we  learned  that  the  predictor  screening

can  identify  predictor , they  may  be  weak  alone ,

but  strong  when  they  are  used in  combination  with  other  predictor .

In  the  scaling  up   and  the  manufacturing  stage  production ,

when  the  batch  run  into  the  issue ,

the  raw  material  lot -to -lot  analysis  is  one  of  the  troubleshooting  item

in  order  to  isolate   the  potential  raw  material  effect .

This  exercise   is  typically  done  in  the  Excel  table .

But  when  the  multiple  raw  material

and  multiple  lots   of  each  raw  material  are  involved ,

it  is  difficult  to  look  at  a  huge  Excel  table

to  analyze  the  raw  material  effect .

In  case  number  15 , a  polyester  formulation

with  three  raw  material

and  about  45  separate  lots  are  plotted   verses  the  date  of  manufacturing

with  the  color  scale  of  the  gel  time .

This  heat  map  plot   provide  a  visual  analysis

for  the  production  engineer  to  determine

whether  a  particular  loss  of  raw  material

is  the  major  cause   of  the  out  of  spec  batch .

We  turn  the  Excel  table into  a  visual  way  for  better  analysis .

Statistics  comparison  in  T -test  or  ANOVA  analysis

are  performed  routinely  in  the  product  development .

A  product  benchmark  exercise  typically  involves

multiple  product  running  under various  testing  protocol ,

aiming  to  have  a  very  comprehensive the  product  comparison  learning  here .

Case  16  is  an  example   of  statistic  analysis

involved  large  combination  of  23  products

and  then  more  than  10  testing  protocol .

In  JMP ,  a  large  volume  statistics  analysis is  not  a  challenge

since  creating  of  the  sub -table is  not  required  in  this  case ,

as  compared  to  other  software .

One  can  utilize  the  column  switchers

and  the  local  data  filter to  create  all  the  combination  of  property

and  adhesive  for  statistics  analysis .

Plus  the  results  of  each  analysis

can  be  copied  into  a  JMP  journal to  streamline  the  reporting .

For  case  number  17 ,

the  needle  bonding  testing  of  light  cured , historically ,  have  a  high  data  variance .

Case  17  use  JMP  to  summarize   18  reports  of  needle -bound  testing

which  involve  multiple  lots  of  adhesive ,

and  those  are  tested  in  various  time .

The  needle  pore  strand ,  its  the  COV ,  are  plotted  in  graph  builder

under  various  lighting ,   radiation  condition ,

as  well  as  the  substrate  combination .

With  the  local  data  filter  here , one  can  easily

change  the  criteria  selection to  have  a  comprehensive  comparison

of  this  adhesive and  their  consistency  performance .

When  this  result  was  presented ,  everyone was  amazed  with  the  JMP  capability .

It  is  so  versatile  and  so  powerful .

This  is  the  last  case for  the  application  gallery .

In  this  case ,  number  18 ,

we  use  the  parallel  plot  feature in  the  graph  builder  to  demonstrate

visual  comparison  of  15  performance items  and  10  adhesives .

Each  performance   has  its  own  unit  and  scale

which  provide  a  visual  comparison more  quantitatively  in  contrast

to  the  qualitatively  comparison in  spider  chart  which  is  used  in  Excel .

So  far ,  in  the  18  application   gallery  examples ,

the  data  are  coming  from   literature ,  instrumentation ,

processing ,  and  not  much emphasis  on  formulated .

Now  we  will  switch  gear   to  discuss  formulation  creation ,

use  worksheets ,   and  it 's  a  JMP -based  worksheet ,

not  a  traditional  one  using  Excel .

Before  we  show  you  the  JMP  worksheet , let 's  discuss  about  adhesive  type .

Broadly  speaking ,  adhesive can  be  divided  in  two  categories :

one  component  adhesives  or   the  two  component  adhesives ,

or  1K  or  2K .

A  1K  system  like   the  Super  Glue  everybody  knows

require  no  mixing  and  it  can  be  cured

by  moisture ,  by  light , by  heat ,  or  by  other  method .

In  case  we  are  dealing  with  one  component but  heat  cure  adhesive  such  as  epoxy ,

then  we  will  need  to  design and  then  calculate  the  stoichiometry

or  the  index  to  balance  the  proportion of  the  epoxy  to  the  amine  hardener .

Then  for  the  two  component  system , 2K  system ,

their  mixture  will  react at  NDM  temperature

so  that  they  are  kept  apart  before  use .

In  a  2K  system ,  their  stoichiometry   will  need  to  be  designed  and  calculated

based  upon  the  desired  mixing  ratio , either  by  weight  or  by  volume .

There  are  some  formulation  calculation  here  we  need  to  perform .

This  type  of  calculation  design historically  been  done  in  Excel .

This  is  the  Excel .

Everybody  know  that  Excel  spreadsheet  allow  mixed  data  type  in  the  same  column

and  its  formulas  can  be applied  to  individual  sales  level

that  make  it  very  flexible  as a  formulation  calculation  worksheet .

Formula  are  typically  organized  in  column  format  like  this .

Each  column  has  a  full  group of  formulation  information

such  as  their  heading ,  which  is  the  ID , their  recipe  ingredient ,

the  formulation  characteristic   or  processing  parameter ,

and  followed  by  the  result .

What  about  the  result ?

Excel -based  worksheet  is  very  useful .

Everybody  using  that   because  it 's  easy  to  learn ,

but  it  does  come  with  some  shortcoming

such  as  first  of  all  the  row  matching .

When  you  have  a  new  ingredient   or  new  testing  results ,

you  need  to  match  to  the  right  row , and  they  take  time .

Then  one  may  need  to  hide or  unhide  a  column  for  comparison .

Then  third  thing  is   it 's  harder  to  analyze  the  data

when  the  results  are  put  in  different  tab .

It 's  a  tab -to -tab  format .

It 's  also  very  difficult  to  make  a  graph in  such  kind  of  a  data  structure .

JMP  offer  webinars  to  go   beyond  the  Excel  spreadsheet

in  various  features  as  listed  here .

But  the  worksheet calculation  is  not  emphasized .

Perhaps  this  is  due  to  the  inherent   data  structure  that  each  column

cannot  have  a  mixed  data  type

and  the  column  formulas is  applied  to  the  entire  column

which  is  not  as  versatile  or  flexible as  compared  to  the  Excel .

Despite  of  these  constraints ,

we  have  developed  JMP  worksheet with  the  following  objectives  in  mind .

It  should  have  a  broader  capability

for  formulation  design ,  calculation , recording ,  and  analysis .

It  is  all  in  one  and  we  want  to  minimize cross -platform  copy -pasting .

It  should  be  easy  to  operate ,

easy  data  entry  and  use  the  JSL for  a  lot  of  the  automation .

Then  the  final  data  set  is  ready for  machine  learning  exercise .

Let 's  look  at  our  Gen1 , and  that  is  for  one  component  system .

This  includes  four  data  group .

We  have  a  formulation  ID ,   we  have  a  recipe ,

we  also  have  a  material   processing  characteristic ,

and  then  we  have   a  testing  result  right  there .

The  four  data  group  are  the  same  as  what you  see  in  the  earlier  Excel  worksheet ,

but  layer  structure  was  organized in  the  column  from  the  left  to  right .

This  is  different  from  the  Excel which  is  from  top  to  the  bottom .

The  data  of  the  three  group ,  2 ,  3 ,  and  4

are  shared  and  recorded   in  the  same  column ,

which  has  a  numeric  data  type .

All  the  recipe ,  all  the  testing  results , and  all  the  formulation  characteristics

all  in  the  numerical  data  type ,

and  they  are  documented in  the  same  column  here .

With  this  kind  of  a  format

The  data  was  also  stacked  together .

I  have  formulation  1  here , formulation  2  here .

With  a  stacking  format , one  can  freely  enter  the  new  ingredient

or  new  testing  item  without  needed to  match  the  role  as  needed  in  Excel .

JSL  was  also  created   to  enable  data  analysis

in  either  tabular  way   or  in  a  graph  format .

This  is  in  a  tabular  way .

Chemist  can  pick  several  formulation  ID and  compare  their  recipe  characteristic

and  performance  in   a  very ,  very  condensed  format  here .

This  is  very  different  from  Excel without  needing  to  hide /unhide  columns

to  bring  formulation to  be  adjacent  to  each  other .

Much ,  much  easier  under   the  JMP  format  here .

Besides  tabulation ,  one  can  make  a  graph

of  the  property  versus   the  property  comments  or  the  sample  ID ,

but  not  the  ingredient  percentage .

This  graph  can  be  combined   with  the  recipe  table  here

into  a  group  under   the  dashboard  operation .

This  make  it  as  a  very effective  visualization  analysis .

As  for  testing  involves   multiple  replicates .

We  typically  just  record   the  average  result .

But  one  can  enter  the  individual   replicate  data  in  the  property  column ,

and  then  perform  the  T  test ,  the  all -over  test ,  using  this  worksheet  here .

In  case  people  doesn 't  want  to  enter  data  in  this  way ,

there  is  the  other  way  to  virtually  link  the  data  file  with  the  replication  result

with  the  worksheet .

That  will  be  shown  later   in  the  presentation .

So  far ,  what  you  see   is  our  Gen1  worksheet

which  involves  no  formulation  calculation .

Chemists  in  my  group  has  been  using  this  tool  for  more  than  one  year .

They  get  used  it  its  easy  data  entry  and very ,  very  powerful  tabulation  analysis .

Next  we 're  going  to  look  at the  Gen  2  worksheet

that  can  overtake  the  Gen1  feature .

It  has  an  additional  feature

for  the  formulation  calculation for  the  1k  and  2k  system .

This  worksheet  also  link with  the  other  JMP  file

that  has  additional  raw  material   information  needed  for  calculation .

We  have  the  other  worksheets ,   we  call  Gen  3 ,  that  are  designed

to  deal  with  the  solvent  borne  system .

It  also  allow  formulator   to  incorporate  master  batches ,

but  due  to  the  time  constraint it  will  not  be  discussed  here .

This  is  our  Gen2  worksheet .

There  are  three  sections .

We  have  a  heading  and  then the  formulation  input  section  right  here .

The  middle  one ,   we  have  a  calculation  output .

The  third  section  is the  processing  material  characteristic

and  also  the  testing  results .

Section  1  and  section  3 are  like  the  one  in  Gen1 ,

but  the  section  2  here  is  newly  added .

The  column  row  name   is  used  to  link  the  reference  file

that  has  additional  data  information  needed  for  calculation .

You  can  see  the  symbol for  the  virtual  link  right  here .

After  chemist  enter  the  formulation  ID ,

they  will  specify  for  columns ,  parts , row ,  name ,  and  initial  weight .

If  they  are  doing  the  2K  system , they  need  to  also  specify  the  mixing  ratio

either  by  index , by  volume ,  or  by  weight  ratio .

Then  the  worksheet  will  output the  mixing  ratio  characteristic  here

again  by  index ,  by  volume ,  or  by  weight .

They  also  provide  a  normalized composition ,  either  by  part .

By  part  means  A  and  B  sum  up  together   by  themselves  and  equal  to  100 ,

or  A  and  B  mixed  together .

We  call  it  normalized  by  total  here .

After  seeing  this  one  and  the  chemist can  perform  the  experiment

and  then  come  back   to  enter  the  results  right  here .

The  other  thing  is

in  the  property  material  characteristic , we  have  the  other  column  called  Lookup .

This  can  extract  the  information from  the  calculation

and  also  the  raw  material   fraction  percentage  ratio

and  automatically  displays  right  here .

Then  chemists  just  need  to  copy parameter  in  the  value  enter  column

and  then  this  will  be  automatically

transferred  to  the  two  normalized percentage  column  for  display  purpose .

We  also  have  three  JSL  there to  facilitate  in  analysis .

The  first  one  is  showing  you   normalization ,  normalized  by  total .

That  means  A  and  B  being  mixed together  and  sum  up  to  100 .

Here ,  I  showed  you  the  formula ,

showed  you  the  characteristic and  showed  you  the  result .

You  have  a  second  JSL that 's  normalized  by  part .

In  this  case ,  you  can  see  your  part  A formulation  and  part  B  formulation ,

and  then  A  and  B  all  have  been normalized  to  100  by  themselves .

With  the  other  JSL , we  can  change  the  formulation

worksheet  format  from  the  stacked to  the  white  format .

In  this  case  their  ID  performance , individual  ingredient ,

and  then  the  characteristic  will all  have  their  own  individual  columns .

With  this  format ,  one  can  make  the  graph

with  the  property  versus the  ingredient  percentage

which  cannot  be  done   under  the  stack  format .

One  can  also  looking for  the  correlation

between  the  performance  or  the  performance with  the  formulation  characteristic .

At  this  moment ,  I  like  to show  you  the  live  demonstration .

This  is  the  formulation  worksheet I  just  showed  you  in  the  PowerPoint .

Basically ,  we  have  the  heading .

Then  we  have  a  formulation  input  section .

We  have  a  calculation  between  n1  and  n2 .

Anything  here  is  for  calculation .

Then  we  have  the  last  section  here ,

that  is  a  performance  and  then the  property  material  characteristic .

I  mentioned  that  we  have  a  JSL ,

allow  people  to  look at  this  result  easily .

Let 's  look  at  this  one ,  JSL  by  total .

We  can  easily  highlight  any  formulation  or  compare  2  and  8 ,

and  then  compare   their  formulation  and  their  result .

These  are  mixed  together .

We  can  look  at  it  by  part .

Part  A  here  and  then  part  B  here .

They  all  sum  up  to  a  hundred   by  themselves .

Easily ,  we  can  compare

Oh  no ,  I  need  to  remove  this  one  first .

I  can  compare  formulation  easily   by  manipulating  the  local  data  filter .

Again  with  the  JSL ,  we  click  the  Join  All .

We  are  turning  the  stack  format  into  a  wider  format .

Each  row  belong  to  one  formulation with  the  heading  here ,

with  their  property , with  their  formulation ,

and  with  their  formulation characteristics  showing  right  here .

For  machine  learning ,

we  can  highlight  a  role  ingredient and  then  just

manually  add  zero  so  that  each ingredient  has  zero  or  whatever ,

and  then  now  we  can  do  this  one .

We  can  create  a  summation  or  something , easy  to  operate  in  this .

I 'm  going  to  show  you  next how  this  one  work  in  the  sense  that

assuming  that  we 're  going to  create  a  formulation .

I 'm  going  to  copy  the  heading .

Sorry ,  I 'm  going  to  delete  everything  here because  I  create  this  one  already  before .

I 'm  going  to  delete the  demonstration  one .

I 'm  going  to  create  it  from  scratch

by  copying  the  heading  here .

I  change  the  name  to  Demonstration  here .

I  will  copy  the  formulation  because

I 'm  going  to  modify  formulation from  this  one ,  the  DOE  8 .

Then  the  DOE  8  is  based  on   one -to -one  mixing  ratio  by  volume .

But  in  this  new  one ,  we  could change  it  to  one -to -two  mixing .

A  divided  by  B  is  one  divided  by  two , so  it  will  be  0 .5 .

Then  I  copy  the  heading  including the  mixing  ratio  all  the  way  down .

Now  all  the  calculation has  been  done  here .

With  this  weight  percentage  I 'm  entering , it  showed  that  the  material  has  an  index

model  ratio  A  to  B   to  be  0 .65 ,  which  is  too  low .

We  need  to ,  using  our  chemistry knowledge ,  to  turn  this  around .

In  this  case ,  for  example , I  make  this  one  2 .

I  can  easily  make  this  one  into  1 .05 .

That  is  the  range  I 'm  looking  for .

Basically ,  assuming  it  is  the  design that  we  want ,  formulation  we  want ,

the  next  thing  we  want  to  do  is  to  copy

some  of  the  testing   that  we  already  had  before ,

that  we  are  monitoring  before ,

but  without  the  results ,  of  course .

We  have  a  new  result  here , so  I 'm  going  to  delete  that  one .

But  we  also  want   to  add  additional  property

which  for  example  is  viscosity

measure  at  a  room  temperature .

With  this  section  here , then  we  want  to  extend  our  heading

to  specify  those  are  belong to  this  formulation .

As  soon  as  I  specify  the  heading ,

the  Lookup  automatically  give  me

the  information  such  as the  missing  characteristic .

1 .5  or  0 .5 ,  they  are  automatically  copied  to  here  through  the  Lookup  function

and  then  the  feeder  loading   in  the  formulation  normalized  to  Total

while  also  being  extracted , sum  up  together  and  put  it  right  here .

Now  I  can  copy  this  information , put  them  in  value  enter ,

and  specify  my  mixer  is  number  2 ,

and  then  start  to  enter  my  results , time  that 's  going  to  be  80 ,

and  adhesion  450  assuming ,   viscosity  20 ,000 .

I 'm  pretty  much  finished  everything , so  let 's  look  at  the  result  here .

We  just  enter  Demonstration .

This  one  was  based on  the  DOE  number  five .

DOE  number  five  is  one  to  one  mixing and  this  Demo  is  only  one  to  two  mixing ,

and  we  added  the  viscosity result  right  here .

It 's  very ,  very  easy .

One  click  you  see  the  result

and  in  the  format  it 's  very  easy to  understand  for  comparison .

This  is  the  end  of  my  demonstration .

Let  me  go  back  to  the  presentation  here .

We  consider  the  JMP  worksheet  that  I 'm   just  showing  you  is  an  integrated  platform

and  here  is  the  summary .

The  worksheet  in  the  stack  format ,  here ,

is  used  for  formulation  design , calculation  and  for  recording  the  results .

The  data  entry  of  raw  material

which  is  needed  for  the  worksheet  is minimized  by  virtually  linked  with

the  other  file  that  has  additional raw  material  information .

JSL  was  widely  used  to  automate

the  worksheet  output  to  the  tabulate , to  graphic ,  to  the  statistic  analysis ,

and  also  to  create  a  table   with  wide  data  format .

The  wide  data  format ,   they  already  have  a  data  structure

for  modeling  via  the  machine  learning

and  also  allow  the  graphical  analysis using  the  ingredient  as  one  of  the  axis .

Then  since  each  of  the  row in  this  wide  format

is  a  unique  tool  formulation  ID ,

this  actually  can  be  used as  a  reference  table

to  join  the  other  JMP  file  that  has   a  testing  result  that  has  a  replication .

When  these  are  joined  together ,

then  we  can  plot  the  raw  data  and  do  statistic  analysis ,

either  as  function  of  the  ingredient   or  as  function  of  the  formulation  ID .

This  JMP  Integrated  Worksheet  Platform

truly  illustrates  it  is  an   all -in -one  platform ,  very ,  very  capable .

In  summary ,  JMP  is  not just  an  advanced  DOE  software .

JMP 's  data  analytics   has  been  effectively  utilized

in  my  group  for  product  development

at  various  stage  to  speed  up the  innovation  process .

JMP -based  formulation  worksheet  is an  integrated  platform  that  feature

broad  formulation  capability ,   all  in  one ,  easy  operation ,

and  machine  learning  ready  data  structure ,

and  more  and  more waiting  to  be  further  explored .

With  this ,  thanks  for  your  attention

and  I  also  like  to  acknowledge  the  people I  work  with  and  learning  to  JMP  together

and  also  our  management  system for  supporting  JMP  adoption  initiative .

Thank  you  very  much .