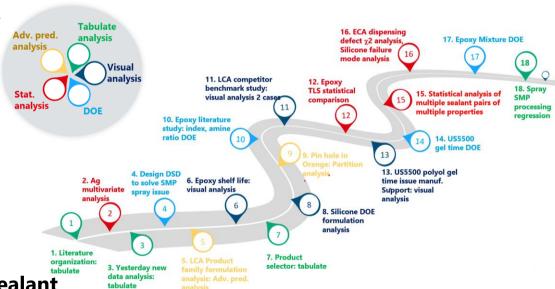


Discovery Summit Americas 2023

Utilizing JMP Data Analytics for Product Development of Adhesives and Sealants

Stone (Chihmin) Cheng, Ph.D. Henkel Corporation Oct. 18, 2023


AGENDA

- Introduction
- About Henkel
- Application gallery :
 - Cases utilizing JMP in product development at various stages
- JMP-based formulation worksheets
 - Introduction
 - Demonstration
- Summary

IMPRESSION - TO SOME FOLKS WITHIN HENKEL "JMP IS AN ADVANCED DOE SOFTWARE"

- True!
 - But it is not the whole truth.
 - Limited adoption
 - Other software options
- How to promote adoption?
 - Emphasize data analytics
 - Need examples
 - Related to adhesive/sealant
 - Speak Our Language!

ABOUT HENKEL ...

SALES

€22.4_{BN}

€2.3_{BN}

ADJUSTED OPERATING PROFIT (EBIT)

146 YEARS

SUCCESS WITH BRANDS AND TECHNOLOGIES

WE EMPLOY MORE THAN

52,000

PEOPLE WORLDWIDE FROM 124 NATIONALITIES

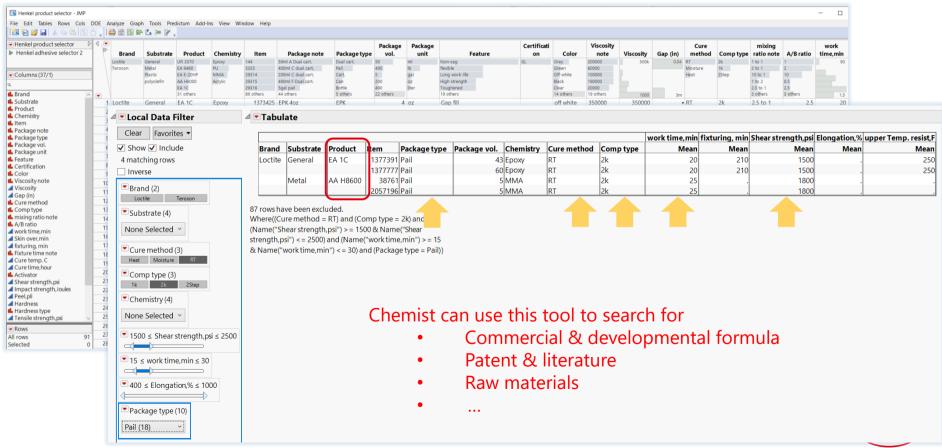
Henkel adhesive technologies

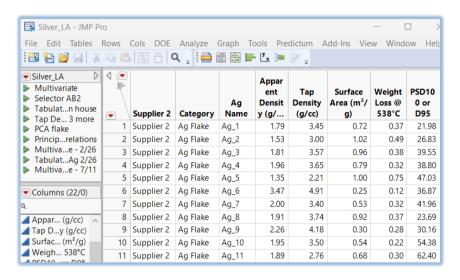
GLOBAL ADHESIVE LEADER

SERVING

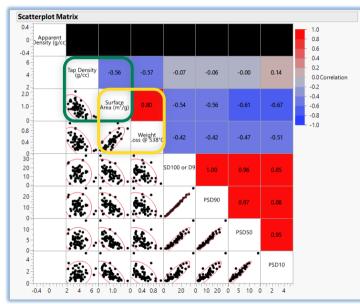
- 130,000 direct customers
- 75 countries
- >800 industries

SUPPORTED BY


- 6,500 customer experts
- 100 manufacturing sites
- **20,000** products


¹ Figure relates to the 2022 fiscal year compared to the 2010 base year

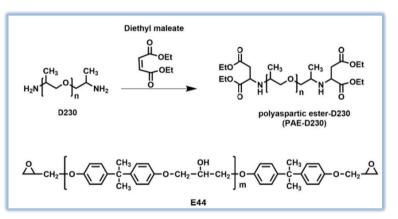
CASE 1: PRODUCTION SELECTOR GUIDE

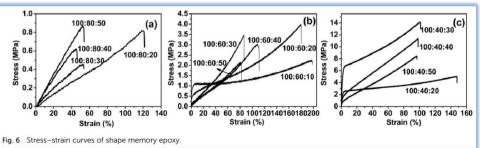


CASE 2: RAW MATERIAL: SILVER MULTIVARIABLE ANALYSIS

Analyze>Multivariate methods>multivariate

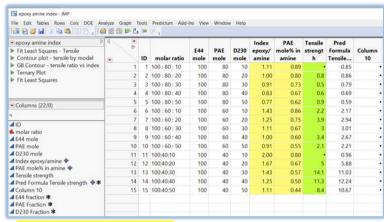
Correlations								
Арр	arent Density (g/cc) Tap [Density (g/cc) Surfac	e Area (m²/g) Weigh	t Loss @ 538°C PSD	100 or D95	PSD90	PSD50	PSD1
Apparent Density (g/cc)	1.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
Tap Density (g/cc)	0.0000	1.0000	-0.5648	-0.5688	-0.0668	-0.0637	-0.0021	0.13
Surface Area (m²/g)	0.0000	-0.5648	1.0000	0.8044	-0.5417	-0.5550	-0.6118	-0.66
Weight Loss @ 538°C	0.0000	-0.5688	0.8044	1.0000	-0.4196	-0.4213	-0.4696	-0.50
PSD100 or D95	0.0000	-0.0668	-0.5417	-0.4196	1.0000	0.9973	0.9553	0.85
PSD90	0.0000	-0.0637	-0.5550	-0.4213	0.9973	1.0000	0.9722	0.87
PSD50	0.0000	-0.0021	-0.6118	-0.4696	0.9553	0.9722	1.0000	0.95
PSD10	0.0000	0.1399	-0.6672	-0.5052	0.8522	0.8774	0.9519	1.00





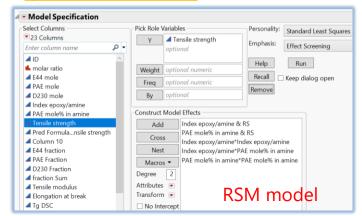
CASE 3: EPOXY LITERATURE LEARNING VIA DOE MODELING

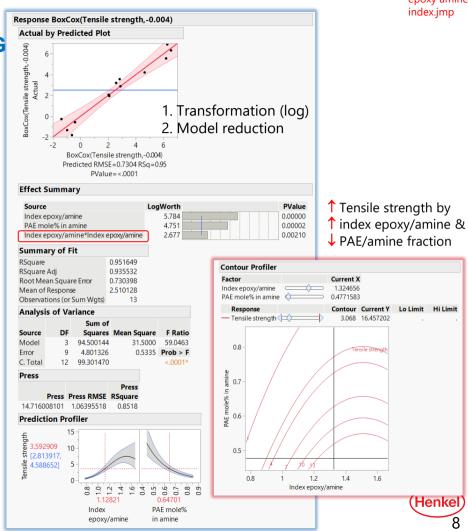
https://pubs.rsc.org/en/content/articlelanding/2018/ra/c8ra00894a

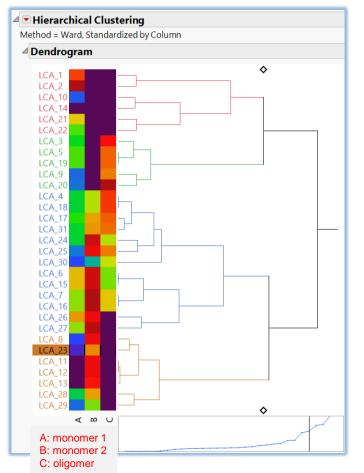


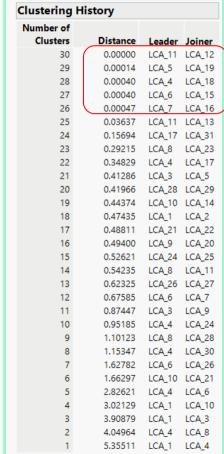
E44 : PAE-D230 : D230	Tensile strength
(molar ratio)	(MPa)
100:80:10 100:80:20 100:80:30 100:80:40 100:80:50 100:60:10 100:60:20 100:60:30 100:60:40 100:60:50 100:40:10 100:40:20 100:40:20 100:40:30 100:40:40:50	$\begin{matrix} -\\ 0.8 \pm 0.2\\ 0.5 \pm 0.1\\ 0.6 \pm 0.2\\ 0.9 \pm 0.3\\ 2.2 \pm 0.5\\ 3.9 \pm 0.3\\ 3.0 \pm 0.6\\ 3.4 \pm 0.3\\ 2.1 \pm 0.2\\ -\\ 5.0 \pm 0.8\\ 14.1 \pm 1.2\\ 11.3 \pm 1.8\\ 8.4 \pm 1.0\\ \end{matrix}$

To max. learning:

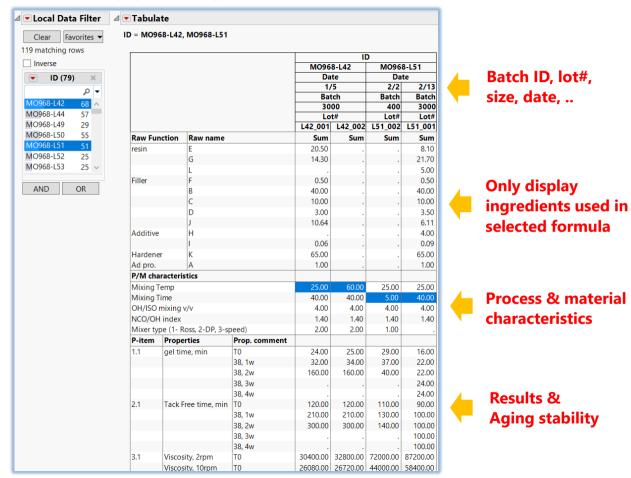

- Can one quantify (by model) formulation effect on tensile properties?
- Amine ratio effect is elucidated. What about epoxy/amine stoichiometry effect?


CASE 3: EPOXY LITERATURE LEARNING

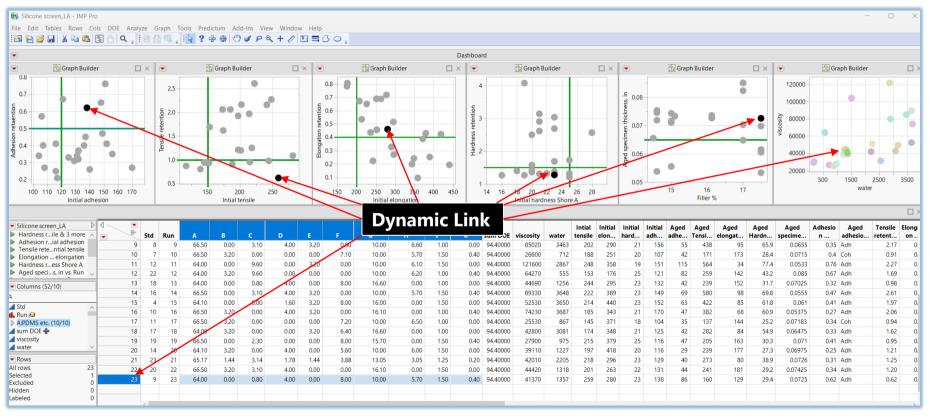

Model with 1) index of epoxy/amine &

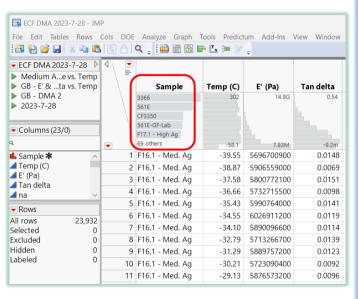

2) PAE mole/amine fraction

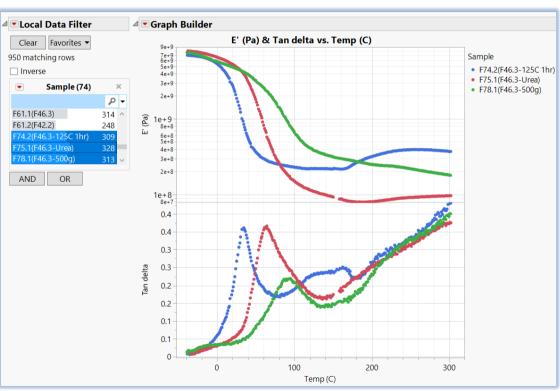
CASE 4: FORMULATION FAMILY ANALYSIS BY HIERARCHICAL CLUSTERING



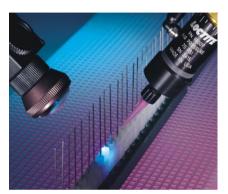
5 pairs have very similar formulation

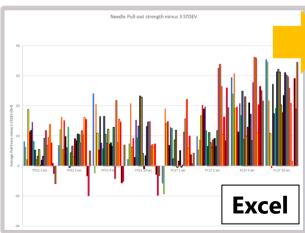

Clustering results depends on factors selection.

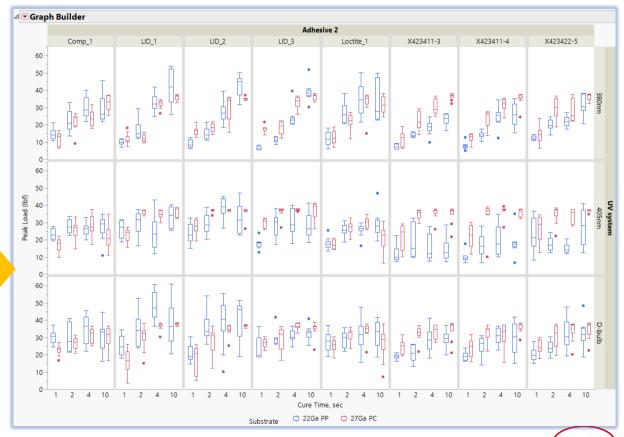

CASE 5: 2K PU DATA ANALYSIS - TABULATE

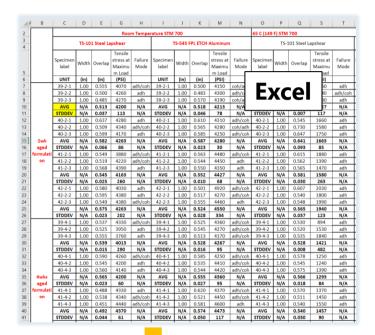


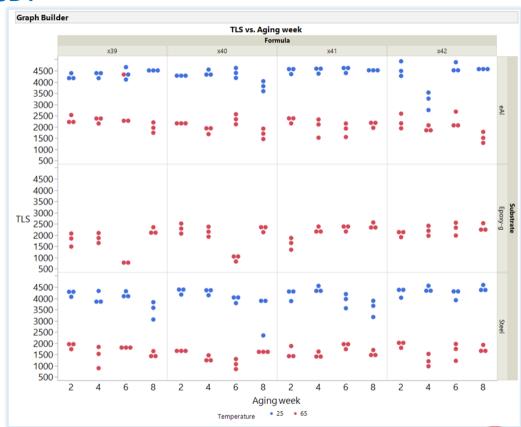
CASE 6: SILICONE DATA ANALYSIS - GRAPHS & TABLE



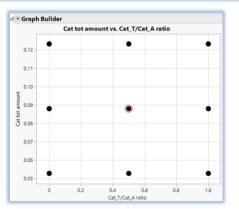

CASE 7: DMA ANALYTICAL INSTRUMENT- MODULUS VS TEMPERATURE

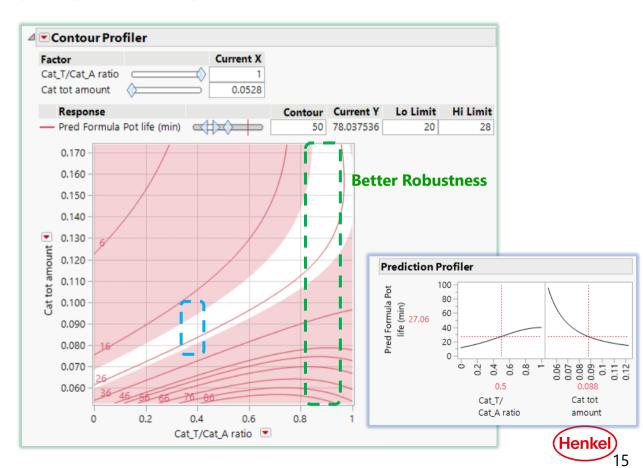



CASE 8: LCA VISUAL DATA ANALYSIS - NEEDLE BONDING

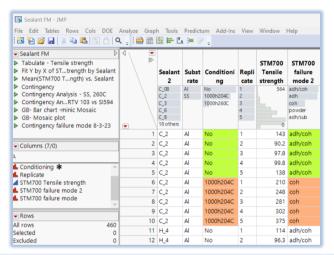


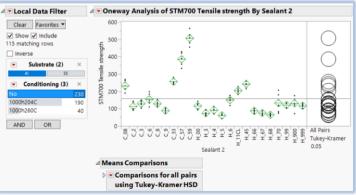
CASE 9: EPOXY SHELF-LIFE STUDY

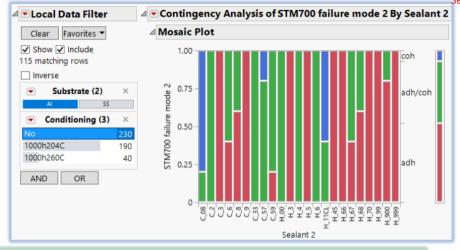

1.epoxy aging data - JMP								
File Edit Tables Rows (Cols DOE Anal	yze Graph T	ools View	Window	Help			
E 🔠 🔚 📂 📓 🖟 😘 🛍	! 🗎 🛅 🖽	📂 🗓 😕 🥑	_					
	-		•		- "		_	
■ 1.epoxy aging data	, .			Substra		Aging	Temp	
	•	ID	Formula	te	ate	week	erat	TLS
	1	2039/02/01	x39	Steel	1	2	25	4070
	2	2039/02/02	x39	Steel	2	2	25	4260
		2039/02/03	x39	Steel	3	2	25	4270
	3	2033/02/03						
	3	2040/02/01	x40	Steel	1	2	25	4280



CASE 10: CATALYST MIXTURE OPTIMIZATION


10-run face-center CCD design


Cat CCD - JMP File Edit Tables Rows Cols	-					ns View Windo
■ Cat CCD Design Central Composite Des	√		Cat_T/	_		Pred
 ▶ Model ▶ Evaluate Design 		Patt ern	Cat_A ratio	Cat tot amount	Pot life (min)	Formula Pot life (min)
▶ DOE Dialog	1		0	0.0528	40.57	38.50
▶ Design spact vs cat ratio ▶ Fit Model	2	-+	0	0.1232	6	5.95
▶ FM ^-0.5	3	a0	0	0.088	11	11.45
Contour ProPot life (min)	4	0a	0.5	0.0528	87	95.46
	5	0A	0.5	0.1232	14.5	14.52
Columns (7/0)	6	00	0.5	0.088	26.53	27.06
۹	0 7	00	0.5	0.088	29.13	27.06
L Pattern ← Cat T/Cat A ratio ★	8	+-	1	0.0528	79	78.04
✓ Cat tot amount 🗱	9	++	- 1	0.1232	28.9	29.41
✓ Pot life (min) ★ ✓ Pred Formula Pot life (min) ◀	10	A0	1	0.088	40.2	39.72



CASE 11: FAILURE MODE ANALYSIS

FORMULATION & APPLICATION STAGE

CASE 12: PROCESSING STUDY - SPRAYABLE SEALANT

Case:

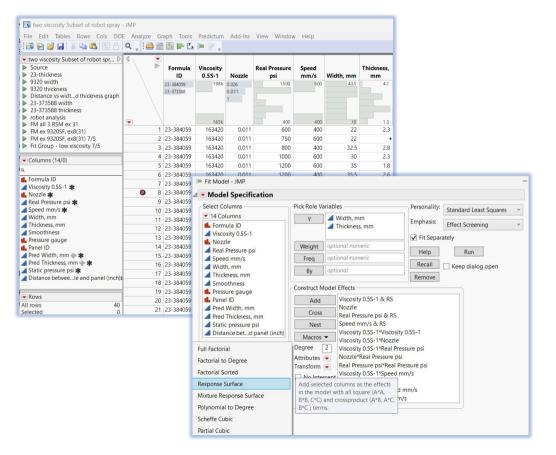
- A sprayable sealant is used to protect metal joints.
- The sprayed beads need to satisfy dimension spec and surface quality
- Spray processing parameters and sealant viscosity affect spraying results.
- Experiments (38 runs) were performed not in DOE fashion
- Seek JMP help in guiding project direction

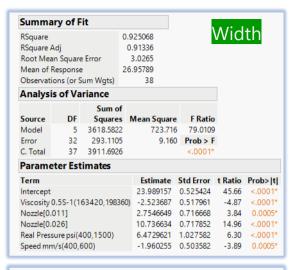
Key Variables:

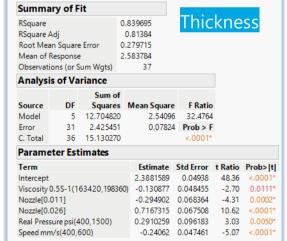
- Spraying pressure
- Spraying nozzle type
- Spray head travel speed
- Sealant viscosity


Measurements:

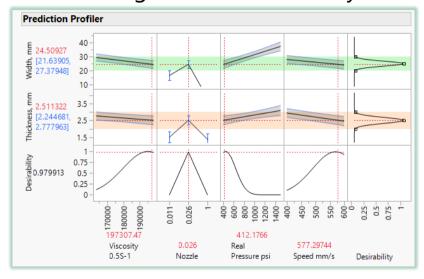
- Deposit width (20-30mm)
- Deposit thickness (2-3mm)

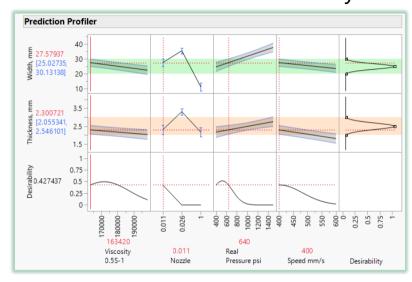






CASE 12: SPRAYABLE SEALANT **MODEL REGRESSION**



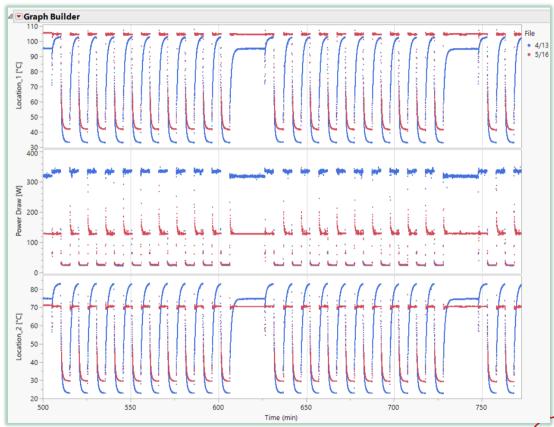


CASE 12: SPRAY PROCESSING VS FORMULATION VISCOSITY

Higher sealant viscosity

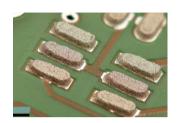
Lower sealant viscosity

- The spraying conditions need to be adjusted depending on sealant viscosity
 - High η: wider nozzle slot, faster speed
 - Low η: narrower nozzle slot, slower speed



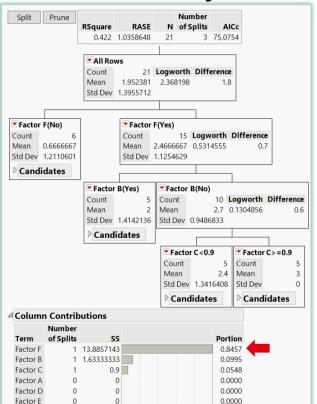
FORMULATION & APPLICATION STAGE

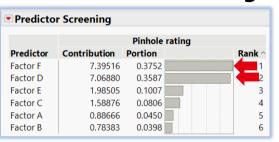
CASE 13: THERMAL PERFORMANCE -THERMAL INTERFACE MATERIALS



			1.00				
➤ TIM ➤ Source ➤ GPU Teme (iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii		*	File	Date	Mode	Segme nt	Time(
			4/13	Jan062023	Cooling	1	242k
Columns (54/1)			5/16		heating soaking	9	
2	-				Heating	4	
il⊾ File ⊿ Date	^	•		Jan012023	Soaking	8 others	
♣ Mode		21	4/13	Jan012023 4:31:11 PM	soaking	1	20
segment		22	4/13	Jan012023 4:31:12 PM	soaking	1	21
▲ Time(sec) ♣		23	4/13	Jan012023 4:31:13 PM	soaking	1	22
▼ Rows	329,710	24	4/13	Jan012023 4:31:14 PM	soaking	1	23
Selected :	\$29,710	25	4/13	Jan012023 4:31:15 PM	soaking	1	24
Excluded	0	26	4/13	Jan012023 4:31:16 PM	soaking	1	25
Hidden	0	27	4/13	Jan012023 4:31:17 PM	soaking	1	26
Labeled	0	28	4/13	Jan012023 4:31:18 PM	soaking	1	2
		29	4/13	Jan012023 4:31:19 PM	soaking	1	28
		30	4/13	Jan012023 4:31:20 PM	soaking	1	29

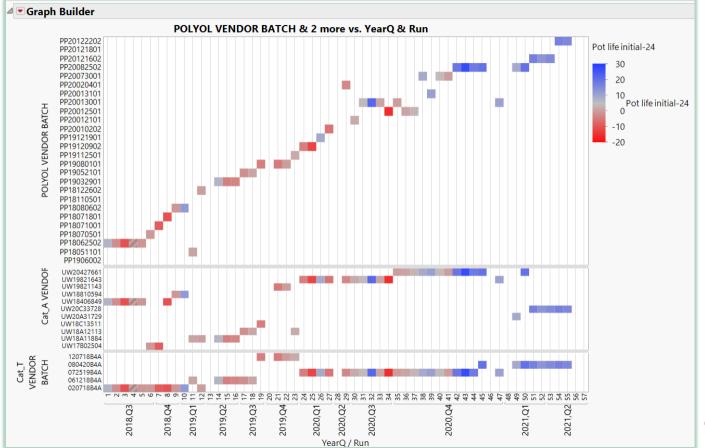
FORMULATION & APPLICATION STAGE


CASE 14: PRINTING DEFECT TROUBLE SHOOTING


Pinting v2 - JMP [File Edit Tables	Rows				Tools F		Add-In	s View	Window
Pinting v2 ▶ Partititeel rod ▶ Predicteening		Print Sample ID	Factor A	Factor B	Factor C	Factor D	Factor E	Factor F	Pinhole rating
▼Columns (8/0)	1	2020028	1	No	0.5	6	0.5	No	0
Q	2	2020010	0.9	No	0.75	6	1	No	0
♣ Print Sample ID	3	2020010	0.9	No	1	7	1	No	0
▲ Factor A ■ Factor B	4	2020030	1	No	0.75	6	1	Yes	3
■ Factor C	5	2020030	0.9	No	0.95	6	1	Yes	3
♣ Factor D	6	2020030	0.9	No	1	6	0.8	Yes	3
▲ Factor E	7	2020030	0.9	No	0.9	6	0.8	Yes	3
■ Factor F	8	2020030	0.65	No	0.5	6	0.5	Yes	0
Pinhole rating	9	2020030	0.75	No	0.75	6	1	Yes	3
Rows	10	2020030	0.85	No	0.9	6	0.8	Yes	3
All rows 21	11	2020030	0.5	No	0.9	6	0.8	Yes	3

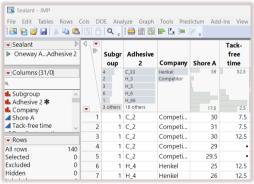
6 factors of processing variables: 21 runs

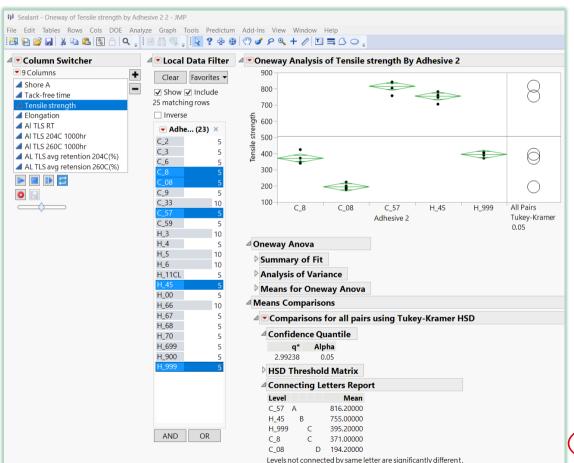
Partition analysis


Predictor screening

SCALE UP & MANUFACTURING STAGE

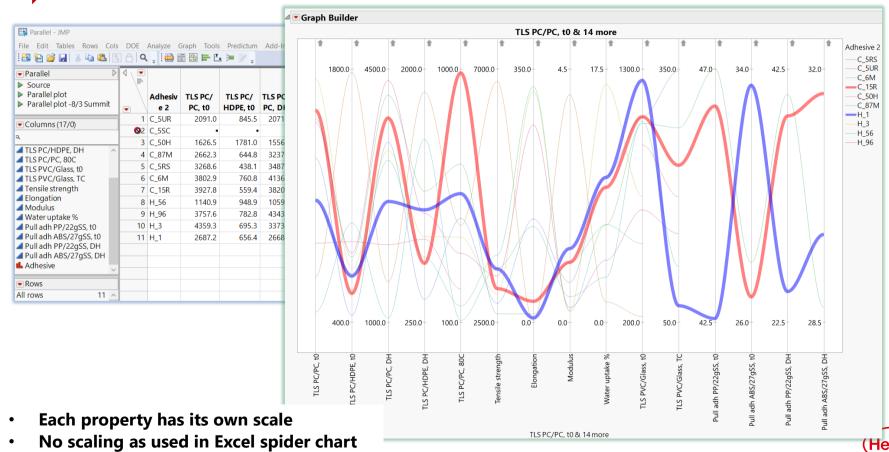
CASE 15: TROUBLE SHOOTING - LOT-TO-LOT ANALYSIS





BENCHMARK STAGE

CASE 16: SILICONE SEALANT COMPARISON


BENCHMARK STAGE

CASE 17: BATCH CONSISTENCY- LIGHT CURE ADHESIVE COMPARISON

BENCHMARK STAGE

CASE 18: LIGHT CURE ADHESIVE COMPARISON

JMP-BASED FORMULATION WORKSHEET DEVELOPMENT

Design, Calculate, Record, Analyze ... Formulation
Using JMP, Instead of Excel

ADHESIVE FORMULATION CALCULATION

A. One component adhesives (1k)

- No mixing, stable during storage
- Super Glue, RTV, anaerobic, light-cure adhesives, ...
- 1k heat cure adhesive like epoxy
 - Stoichiometry (index): molar ratio of epoxy to amine (or acid)

B. Two component adhesives (2K)

- 2k epoxy, 2k polyurethane, 2k silicone, ...
- Require mixing by
 - index
 - volume ratio
 - weight ratio
 - typically, combination of index with volume/weight

C. Excel is used in formulation calculation

- Equivalent weight of function group
- Density

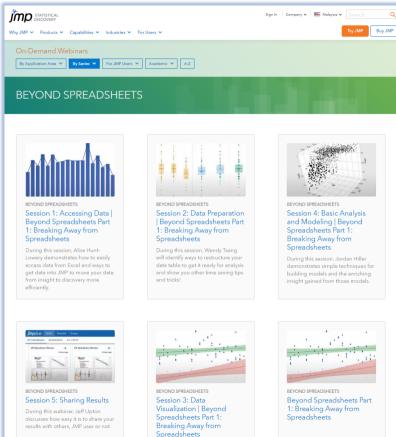
FORMULATION WITH EXCEL Formula 2/28 2/28 2/28 2/28 2/28 2/28 3/2 3/2 Heading F7.2 F7.2 F7.2 F12.1 F12.1 F12.2 F12.2 F12.2 F12.2 F13.1 F13.2 F13.3 F13.6 F13.7 F13.8 F14.1 F14.1 F14.2 F14.2 F14.2 F15.1 F15 2.20 2.20 2.20 1.80 1.80 1.80 0.07 0.07 0.07 3.14 2.57 0.10 3.14 2.94 2.57 2.41 2.65 2.17 0.08 0.10 0.09 0.01 0.01 0.01 0.01 0.01 0.84 0.79 0.59 0.59 4.20 3.93 3.55 294 294 0.30 0.23 0.23 0.23 0.62 0.48 0.48 0.48 0.16 0.15 0.35 0.32 0.14 0.10 0.29 0.22 0.07 0.07 0.07 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 21 71 22 47 22 47 22 47 16.938 19.33 20.63 20.63 19.32 21.10 20.31 32.999 37.65 40.20 40.20 37.65 41.14 39.60 17.770 20.28 21.65 21.65 20.27 22.17 21.34 42.30 43.78 43.78 43.78 14.59 14.59 14.59 22.78 23.57 23.57 23.57 7.86 7.86 7.86 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 0.01 0.01 0.01 0.01 | 0.01 | 0.01 | 0.01 3.68 3.68 3.68 3.26 3.26 5.74 5.74 5.74 5.07 5.07 3.26 5.07 3.26 3.26 5.07 5.07 3.26 3.26 3.26 3.26 5.07 5.07 5.07 5.07 1.88 1.88 1.88 Ingredient 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.71 1.71 1.71 1.71 1.71 1.71 | 1.71 | 1.71 | 1.71 | 0.58 | 0.58 | 0.58 0.12 0.12 0.12 0.12 0.12 0.12 | 0.12 | 0.12 | 0.12 | 0.04 | 0.04 | 0.04 87.92 87.92 0.00 0.00 0.00 73 089 89.80 89.80 89.80 89.80 89.80 89.80 | 89.80 6.09 6.09 12.04 5.93 5.000 12.04 Charact. / 1.04 1.04 1.04 1.04 1.04 0.0% 0.0% 0.0% 0.0% 0.0% 1.04 1.04 1.04 1.04 1.04 1.04 1.04 39.1% 39.1% 39.1% 39.1% 39.1% 19.9% 19.9% 19.9% process 131 131 131 104 104 1.04 104 104 39.1% 39.1% 39.1% 39.1% 39.1% 39.1% 39.1% 39.1% 39.1% 0.0% 0.0% 150C/30min Resistance (ohm) = 0.7906 0.1586 0.1161 0.0906 5.2 pating thickness (after cure, mil) = 22 5.2 2.1 4.1 1.6 1.9 2.1 4.3 3 3.6 180C/30min Resistance (ohm) = 0.78173 0.1688 0.30593 0.132 0.1483 0.1017 0.0142 0.0382 0.0172 0.0194 0.0669 0.0929 0.2079 /olume resistance (Ohm-cm) * E4 = 1.9 W/mk = 180C/30min Al TLS (psi) = 180C/30min Al TLS (psi) STDEV = Results Al TLS failure mode = 114 n, Coating thickness (after cure, mil) 5.5 2.4 702067 1056400 0.1037 0.2406 0.0855 0.015 0.0373 0.0169 0.0262 0.0776 0.1265 0.2062 /olume resistance (Ohm.cm) * F4 = 2.2 150C/60min TLS operator Zhang 88 80 Al claming pressure (PSI) -1253 990

Pros:

- Available to all, easy sharing & communication, no additional training
- Convenience: All data in one column, Mixed data types
- Formulating, calculating, recording, analyzing, ... all in the same file

Cons:

- Need Row matching
 - Ingredients
 Test results
 Long raw list in
 - Long raw list in scouting phase
- Need to hide columns for easy comparison in large table
- Hard to compare in tab-by-tab format
- Difficulty in graphing



JMP WEBINARS: BEYOND SPREADSHEETS

https://www.imp.com/en_my/events/ondeman d/webcasts/bv-series/bevondspreadsheets.html

- Data access
- Data preparation
- Data visualization
- Basic analysis and modelling
- Sharing results

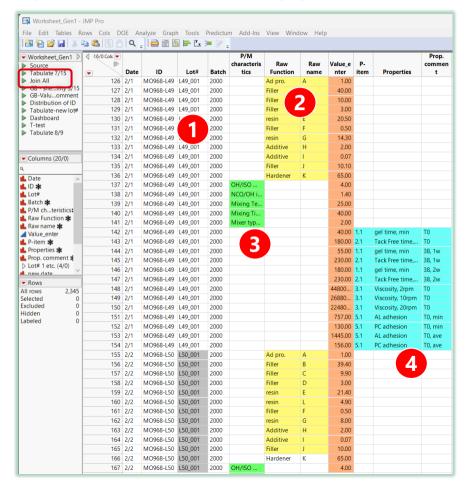
During this session. Clovis Weisbart

will show you the importance of

share your results.

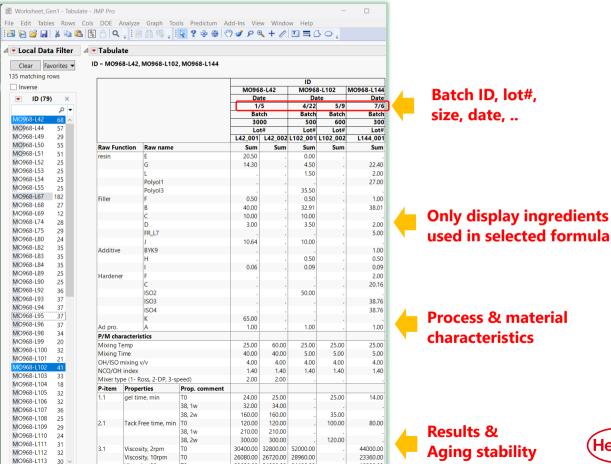
Spreadsheet for adhesive formulation:

Must have Data recording, formulation. calculation. tabulating, graphing, ...



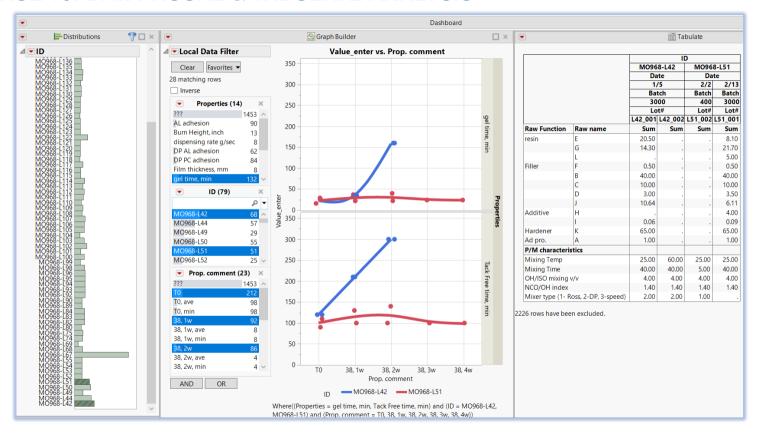
JMP WORKSHEET DEVELOPMENT: OBJECTIVES

- Broad capability:
 - formulation design, calculation, recording, analysis, ...
- All in one:
 - minimize cross-platform copy & paste
- Easy operation:
 - simple data entry, JSL, virtual link ...
- ML ready:
 - normalized, wide format ...


CASE 19: FORMULA ENTRY AND ANALYSIS

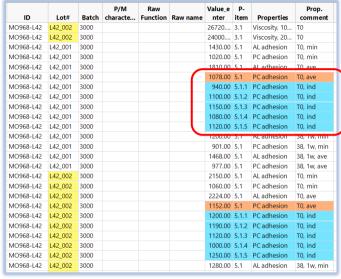
- Narrow data structure Formulation Stacking No row matching
- **Analysis in Tabulate** platform
- Min. disadvantages as seen in Excel
- **Chemists perform the** formulation in Excel and copy formula & results into JMP table

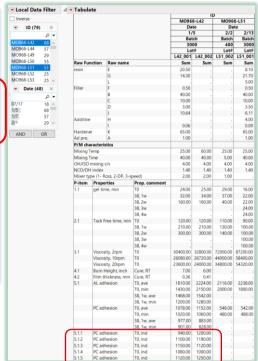
CASE 19: DATA ANALYSIS - TABULATE



23600.00 24000.00 24400.00

Viscosity, 20rpm


18800.00


CASE 19: DATA VISUAL & TABULATE ANALYSIS

Graph: y (property) vs ID or Prop_comm (NOT ingredient)

CASE 19: STATISTICAL ANALYSIS

34

JMP FORMULATION WORKSHEETS

	GEN	No. of adhesive component	Formulation calculation	Link to ref. table	Master batch handling	Applicability	Normalization & lookup	Data entry	Output	Implementation
	1	1 or 2	None	No	No	1k non reactive, 2k reactive pre- calculated in Excel	No			Q1 2022
-	2	1 or 2	Mixing by volume, by weight, or by stoich.	Yes	No	Reactive & non-reactive	Yes	Narrow format, stacked, no raw matching	tabulate, graphs, wide data format, ML ready	Q1 2023
	3	1	Stoich. Solid content, dry composition	Yes	Yes, multiple parallel or cascading	Solvent borne Reactive & non-reactive	Yes	Taw matering	WETCAU	Q2 2023

CASE 20: FORMULATION DESIGN AND CALCULATION 1K & 2K

ile Edit Tables Row	Cols	DOE	Analy	ze G	raph '	Tools	Predict	tum A	dd-Ins V	iew Wi	ndow	Help																		
🕮 🖺 📂 🔛 🐰 🗈	<u>a</u> =		۹ 🍦		d.	<u>y</u>	>	=																						
R_worksheet_LA Add_link & formula Tabulate - by total Join All			prede cesor	mix	ID_A/ B	A/B	Not e1	Age_ A/B	Desire d Index A/B	Desire d Vol A/B ratio	Desire d Wt A/B ratio	Part	Raw name	initial	n Initial 1 sum	link ed	- total	Vol ratio	ratio	wt% by part	•	Sp_Gr	Part \$_\$/ kg	wt% total		P/M remark		Value_ I	D Properties	Pro
IVIAITUAT AUU U	1 8				2A/2B	_		t0	•	1.0		A	A	120.00	132.0	200	1.27	1.00	0.76	90.91	100	1.218	0.0	39.12	100 A		•	•		
Columns (128/0)	2 8				2A/2B	_		t0	•	1.0	'	Α	Р	12.00	132.0	0	1.27	1.00	0.76	9.09	100	1.218	0.0	3.91	100 🗚		•	•		
	3 8				2A/2B			t0	•	1.0		В	F	25.85 I		-342	1.27	1.00	0.76	29.40	100	1.612	0.0	16.75	100 E		•	•		
Date etc. (7/0)	4 8				2A/2B	_		t0	•	1.0		В	E	5.00		-31	1.27		0.76	5.69	100	1.612	0.0	3.24	100 B		•	•		
Mixing_i1K (3/0)	5 8				2A/2B	_		t0	•	1.0		В	S	0.09		0	1.27	1.00	0.76	0.10	100	1.612	0.0	0.06	100 E		•	•		
Part 🛷 🗱	6 8				2A/2B	_		t0	•	1.0		В	Q	52.00 I		0	1.27	1.00	0.76	59.13	100	1.612	0.0	33.68	100 B		•	•		
Raw name 💡	7 8				2A/2B	_		t0	•	1.0		В	P	5.00	87.9	0	1.27	1.00	0.76	5.69	100	1.612	0.0	3.24	100 B		•	•		
Wt. initial	8 8				2A/2B			t0	•	•		\times		•	•	•	•	•	•	1.27	•	•	0.0	1.27	•	Index A/B	1.27	1.27		
n1 🕂 🛪	9 8	/1	D01	D02	2A/2B	50g		t0	•	•		\sim		•	•	•	•	•	•	1.00	•	•	0.0	1.00	•	Vol A/B	1.00	1.00		
Initial sum # EW_linked #	10 8	/1	D01	D02	2A/2B	50g		t0	•	•		\times		•		•	•	•	•	0.76	•	•	0.0	0.76	• [Wt A/B	0.76	0.76		
Index - total #	11 8	/1	D01	D02	2A/2B	50g		t0	•	•		\sim	1	•		•	•	•	•	7.15	•	•	0.0	7.15	• [Filler_2 %	0.00	7.15		
Mixing1k (4/0)	12 8	/1	D01	D02	2A/2B	50g		t0	•	•		\sim		•		•	•	•	•	1.00	•	•	0.0	1.00	• [Mixer (1SP,	•	1.00		
Sp_Gr+	13 8	/1	D01	D02	2A/2B	50g		t0	•	•		\sim		•		•	•	•	•	35.00	•	•	0.0	35.00	•		•	35.00 1	gel time, mir	n t0, R
Part \$_\$/kg 🖶	14 8	/1	D01	D02	2A/2B	50g		t0				\sim		•		•	•	•	•	521.00	•		0.0	521	• [•	521.00 2	PC adhesion	t0, a
Nor. wt% total 🖶	15 8	/2		D03	D03	100g		t0				1K	W	83.42 I	143.8	191	1.94		•	•	•	1.242	0.0	57.99	100 K					
Sum N-wt total #	16 8	/2		D03	D03	100g		t0				1K	R	15.00 I	143.8	0	1.94		•	•	•	1.242	0.0	10.43	100 K		•			
Rows	17 8	/2		D03	D03	100g		t0				1K	P	14.57 I	143.8	0	1.94		•	•		1.242	0.0	10.13	100 K		•	•		
I rows 99	18 8	/2		D03	D03	100g		t0				1K	F	4.95	143.8	-342	1.94					1.242	0.0	3.44	100 K					
lected 0	19 8			D03		100g		t0				1K	М	25.85	143.8	-123	1.94					1.242	0.0	17.97	100 K					
cluded 0	20 8				D03	100g		t0				1K	U	0.05	143.8	0	1.94					1.242	0.0	0.03	100 K					
dden 0	21 8			D03		100g		t0			٠.			•						1.94			0.0	1.94	• 1		1.94	1.94		
beled 0	22 8			D03		100g		t0				$\langle \rangle$	>							2.00			0.0	2.00				2.00		
	23 8				D03	100g		t0				<	>							20.56				20.56	•		20	20.56		
	24 8			D03		100g		t0					>	•						70.00			0.0	70.00		111101 10176	20		gel time, mir	n 40 E

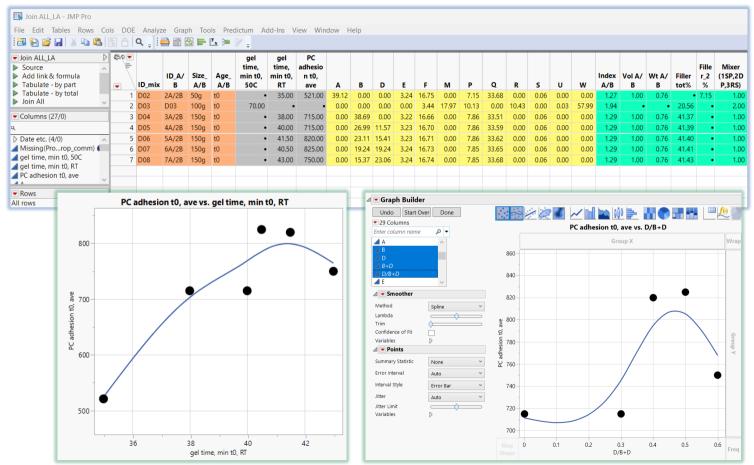
Data Entry: heading & formulation input

Calculation Output

Data Entry: P/M & Results

- Initial formulation does not need to total to 100%.
- Mixed formulation is normalized to 100% for easy data analysis.
- P/M lookup capable of extract information of columns, raw function, raw %, raw ratio, ...

CASE 20: DATA ANALYSIS - TABULATE


Normalized By Total

						No	r. wt% t	otal		
							ID mix			
				D02	D03	D04	D05	D06	D07	D08
				2A/2B	D03	3A/2B	4A/2B	5A/2B	6A/2B	7A/2B
Raw f	unction[Raw na	ame]	Raw name	Sum	Sum	Sum	Sum	Sum	Sum	Sum
Resin			E	3.24		3.22	3.23	3.23	3.24	3.24
			F	16.75	3.44	16.66	16.70	16.71	16.73	16.74
			M		17.97					
Harde	ner		A	39.12						
			В			38.69	26.99	23.11	19.24	15.37
			D			0.00	11.57	15.41	19.24	23.06
Block_	Hardener		W		57.99					
Filler			P	7.15	10.13	7.86	7.86	7.86	7.85	7.85
			Q	33.68		33.51	33.59	33.62	33.65	33.68
			R		10.43					
Additi	ve		S	0.06		0.06	0.06	0.06	0.06	0.06
			U		0.03					
P/M r	emark									
Index .	A/B			1.27	1.94	1.29	1.29	1.29	1.29	1.29
Vol A/	В			1.00		1.00	1.00	1.00	1.00	1.00
Wt A/	В			0.76		0.76	0.76	0.76	0.76	0.76
Filler t	ot%				20.56	41.37	41.39	41.40	41.41	41.43
Filler_2	2 %			7.15						
Mixer	(1SP,2DP,3RS)			1.00	2.00	1.00	1.00	1.00	1.00	1.00
P_ID	Properties	Prop_	comm							
1.1	gel time, min	t0, RT		35.00		38.00	40.00	41.50	40.50	43.00
1.2	gel time, min	t0, 50	С		70.00					
2.1	PC adhesion	t0, av	e	521.00		715.00	715.00	820.00	825.00	750.00

Normalized By Part

						Nor.	wt% by					
				ID_mix D02 D03 D04 D05 D06 D07								
				2A/2B	D03		4A/2B			7A/2		
Part	Raw function	[Raw name]	Raw name	Sum	Sum	Sum	Sum	Sum	Sum	Su		
Α	Hardener		A	90.91								
			В			89.29	62.50	53.57	44.64	35.		
			D			0.00	26.79	35.71	44.64	53.		
	Filler		P	9.09		10.71	10.71	10.71	10.71	10.		
В	Resin		E	5.69		5.69	5.69	5.69	5.69	5.		
\Box			F	29.40		29.40	29.40	29.40	29.40	29.		
	Filler		P	5.69		5.69	5.69	5.69	5.69	5.6		
			Q	59.13		59.13	59.13	59.13	59.13	59.		
	Additive		S	0.10		0.10	0.10	0.10	0.10	0.		
P/M r	remark											
Index	A/B			1.27	1.94	1.29	1.29	1.29	1.29	1.3		
Vol A	/B			1.00		1.00	1.00	1.00	1.00	1.0		
Wt A/	В			0.76		0.76	0.76	0.76	0.76	0.		
Filler t	tot%				20.56	41.37	41.39	41.40	41.41	41.		
Filler_	2 %			7.15								
Mixer	(1SP,2DP,3RS)			1.00	2.00	1.00	1.00	1.00	1.00	1.0		
P_ID	Properties	Prop_comm										
1.1	gel time, min	t0, RT		35.00		38.00	40.00	41.50	40.50	43.0		
1.2	gel time, min	t0, 50C			70.00							
2.1	PC adhesion	t0, ave		521.00		715.00	715.00	820.00	825.00	750.		

CASE 20: TABLE FORMAT CHANGE TO WIDE FORMAT & GRAPH ANALYSIS

INTEGRATED WORKSHEET PLATFORM PC Adharion vs. ISO ATID mix1/ISO 3TID mix1a/ISO ATID mix1 **Worksheet (Stacked / Narrow)** ID = M0968-L42, M0968-L5 Testing data file w replicates ● ID (79) × Design, Calculation, Record, Analysis,... PC Adh...[ID mix] 2 D02 500 Columns (5/0) 550 4 D02 Oneway Analysis of PC Adhesion By ID mix 5 D02 650 ID mix 6 D08 750 LID_A/B 7 D08 740 Tabulate **⊿** run 8 D08 8/9 879 ▲ PC Adhesion 9 D08 677 10 D08 8/9 7A/2B 705 Local Data Filter Clear Favorites * 11 D06 8/8 5A/2B 688 12 D06 ▼ Rows 13 D06 8/8 5A/28 950 All rows 14 D06 5A/2B Selected 15 D06 8/8 Excluded **JSL** (Unstacked / Wide format) **Graphs:** ▼ Join ALL LA Add link & formula y vs ID la Tabulate - bu part Tabulate - by total Clear Fauscles * ▲ Missing(Pro...rop con del time, min to 500 4 nel time min t0 RT ▲ PC adhesion t0, ave Virtual link Raw data 1 Harriene ✓ SpGr 1 Hardene file (Ref) -1 Resin 0.959 342 -1 Resin t & ANOVA 1.035 -1 Resin analysis 1.12 93.3 **Machine learning modeling** 1.12 103.3

1.09 211.7 1.05 123 Graphs: y vs ingredients 39

Summary

- JMP is NOT just an advanced DOE software!
- JMP data analytics have been effectively utilized in product development at various stages to speed up innovation processes.
- JMP-based formulation worksheet is an integrated platform that features broad formulating capability, all in one, easy operation, ML ready, and more...

Acknowledgements

- AMI & Rocky Hill colleagues in providing data/case for training and presentation
- Henkel AMI management in supporting and driving JMP initiative

Thank you!

