For time dependent processes (growth, seasonality etc.) locally interpolated values can make more sense than the different imputation options in JMP 14.
Two JSL examples for populating missing values by interpolation using splines.
//Example table with missing values
dt = New Table("untitled 28882",
Add Rows(10),
New Column("Time", Set Values([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])),
New Column("Data", Set Values([2, 4, ., 6, 7, 8, ., ., 13, 17]))
);
// 1. Create a new column with imputed missing values
dt << Bivariate(Y(:Data), X(:Time), Fit Spline(1e-15, {Save Predicteds}));
// 2. Or impute missing values directly in the original column
m = Spline Eval(
:Time << get values,
Spline Coef(:Time << get values, :Data << get values, 1e-15)
);
For Each Row(If(Is Missing(:Data), :Data = m[Row()], :Data << color cells(10, Row())));