cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

Discussions

Solve problems, and share tips and tricks with other JMP users.
%3CLINGO-SUB%20id%3D%22lingo-sub-752565%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3EJMP18%20Python%20%E3%82%B9%E3%82%AF%E3%83%AA%E3%83%97%E3%83%88%E3%82%92%E4%BD%BF%E7%94%A8%E3%81%97%E3%81%A6%E6%A9%9F%E6%A2%B0%E5%AD%A6%E7%BF%92%E3%83%A2%E3%83%87%E3%83%AA%E3%83%B3%E3%82%B0%E3%82%92%E5%AE%9F%E8%A1%8C%E3%81%99%E3%82%8B%E3%81%AB%E3%81%AF%E3%81%A9%E3%81%86%E3%81%99%E3%82%8C%E3%81%B0%E3%82%88%E3%81%84%E3%81%A7%E3%81%99%E3%81%8B%3F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-752565%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3E%3CP%3E%E3%81%93%E3%82%93%E3%81%AB%E3%81%A1%E3%81%AF%E3%80%81%3CBR%20%2F%3E%E7%A7%81%E3%81%AF%E3%80%81JMP%20Python%20%E3%82%B9%E3%82%AF%E3%83%AA%E3%83%97%E3%83%88%20(JMP18)%20%E3%82%92%E4%BD%BF%E7%94%A8%E3%81%97%E3%81%A6%20LightGBM%20%E3%83%A2%E3%83%87%E3%83%AB%E3%82%92%E4%BD%9C%E6%88%90%E4%B8%AD%E3%81%A7%E3%81%99%E3%80%82%3CBR%20%2F%3E%E7%8F%BE%E5%9C%A8%E3%81%AE%E8%A8%AD%E5%AE%9A%E3%81%AF%E6%AC%A1%E3%81%AE%E3%81%A8%E3%81%8A%E3%82%8A%E3%81%A7%E3%81%99%E3%80%82%3CBR%20%2F%3E%20-%20X%20%E5%A4%89%E6%95%B0%3A%20%22train1.csv%22%20%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB%E3%80%81%E5%88%97%20D1%20%E3%81%8B%E3%82%89%20D1776%3CBR%20%2F%3E%20-%20Y%E5%A4%89%E6%95%B0%3A%E3%80%8Cy1.csv%E3%80%8D%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB%E3%80%81%E3%80%8C%E3%82%A2%E3%82%AF%E3%83%86%E3%82%A3%E3%83%93%E3%83%86%E3%82%A3%E3%80%8D%E5%88%97%3C%2FP%3E%3CP%3E-%20%E4%BA%88%E6%B8%AC%E3%82%BF%E3%83%BC%E3%82%B2%E3%83%83%E3%83%88%E3%80%8C%E3%82%A2%E3%82%AF%E3%83%86%E3%82%A3%E3%83%93%E3%83%86%E3%82%A3%E3%80%8D%3A%20%E3%80%8Ctest1.csv%E3%80%8D%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB%E3%80%81%E5%88%97%20D1%20%E3%81%8B%E3%82%89%20D1776%3CBR%20%2F%3E%20-%20%E6%B3%A8%3A%20%E5%85%83%E3%81%AE%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB%E3%80%8Ctrain_original.csv%E3%80%8D%E3%80%81%E5%88%97%20Activity%20%E3%81%8B%E3%82%89%20D1776%E3%80%82Kaggle.com%20(%20%3CA%20href%3D%22https%3A%2F%2Fwww.kaggle.com%2Fcompetitions%2Fbioresponse%2Fdata%3Fselect%3Dtrain.csv%22%20target%3D%22_blank%22%20rel%3D%22noopener%20nofollow%20noreferrer%22%3E%E7%94%9F%E7%89%A9%E5%AD%A6%E7%9A%84%E5%8F%8D%E5%BF%9C%E3%81%AE%E4%BA%88%E6%B8%AC)%3C%2FA%3E%E3%82%88%E3%82%8A%3CBR%20%2F%3E%3CBR%20%2F%3E%3CBR%20%2F%3E%E4%BB%A5%E4%B8%8B%E3%81%AE%E5%95%8F%E9%A1%8C%E3%81%AB%E3%81%A4%E3%81%84%E3%81%A6%E8%AA%B0%E3%81%8B%E3%81%8C%E3%82%A2%E3%83%89%E3%83%90%E3%82%A4%E3%82%B9%E3%82%92%E3%81%8F%E3%81%A0%E3%81%95%E3%82%8C%E3%81%B0%E5%B9%B8%E3%81%84%E3%81%A7%E3%81%99%E3%80%82%3CBR%20%2F%3E%20-%20JMP18%20Python%E7%92%B0%E5%A2%83%E3%81%A7%E3%81%AFLightGBM%E3%83%A2%E3%83%87%E3%83%AA%E3%83%B3%E3%82%B0%E3%82%92%E5%AE%9F%E8%A1%8C%E3%81%A7%E3%81%8D%E3%81%BE%E3%81%9B%E3%82%93%3CBR%20%2F%3E%3CBR%20%2F%3E%E5%8F%82%E8%80%83%E3%81%BE%E3%81%A7%E3%81%AB%E3%80%81%E4%BB%A5%E4%B8%8B%E3%81%AB%20JMP%20Python%20%E3%82%B9%E3%82%AF%E3%83%AA%E3%83%97%E3%83%88%E3%82%92%E8%A8%98%E8%BC%89%E3%81%97%E3%81%BE%E3%81%97%E3%81%9F%E3%80%82%E8%A9%B3%E7%B4%B0%E3%81%AB%E3%81%A4%E3%81%84%E3%81%A6%E3%81%AF%E4%BB%A5%E4%B8%8B%E3%82%92%E5%8F%82%E7%85%A7%E3%81%97%E3%81%A6%E3%81%8F%E3%81%A0%E3%81%95%E3%81%84%E3%80%82%3CBR%20%2F%3E%E4%BA%8B%E5%89%8D%E3%81%AB%E3%81%8A%E6%99%82%E9%96%93%E3%82%92%E3%81%84%E3%81%9F%E3%81%A0%E3%81%8D%E3%81%82%E3%82%8A%E3%81%8C%E3%81%A8%E3%81%86%E3%81%94%E3%81%96%E3%81%84%E3%81%BE%E3%81%99%EF%BC%81%20%3A%20)%3C%2FP%3E%3CP%3E%20%3C%2FP%3E%3CP%3E%20%3C%2FP%3E%3CP%3E%20%3C%2FP%3E%3CPRE%3E%3CCODE%20class%3D%22%20language-jsl%22%3Eimport%20jmp%0Aimport%20jmputils%0A%0A%23%20update%20to%20latest%20version%20of%20pip%20(Package%20Installer%20of%20python)%20and%20setuptools%20then%20install%20numpy%20%26amp%3B%20pandas%0Ajmputils.jpip('install%20--upgrade'%2C%20'pip%20setuptools')%0Ajmputils.jpip('install'%2C%20'pandas%20numpy%20scikit-learn%20keras%20lightgbm')%0A%0A%23%20Import%20package%0Aimport%20numpy%20as%20np%20%23%20linear%20algebra%0Aimport%20pandas%20as%20pd%20%23%20data%20processing%2C%20CSV%20file%20I%2FO%20(e.g.%20pd.read_csv)%0A%0A%0A%0A%23%20Load%20data%0Atrain1%20%3D%20pd.read_csv('D%3A%2Fsteve.kim%2FKaggle%2FBI%20Biological%20Response%2Ftrain1.csv')%0Ay1%20%3D%20pd.read_csv('D%3A%2Fsteve.kim%2FKaggle%2FBI%20Biological%20Response%2Fy1.csv')%0Atest1%20%3D%20pd.read_csv('D%3A%2Fsteve.kim%2FKaggle%2FBI%20Biological%20Response%2Ftest1.csv')%0A%0Atrain1.head()%20%23%20No%20Result%20in%20JMP%2C%20but%20it's%20okay.%20It's%20fine%20to%20open%20the%20datatable%20using%20'jmp.open'%0Ay1.head()%20%23%20No%20Result%20in%20JMP%2C%20but%20it's%20okay.%20It's%20fine%20to%20open%20the%20datatable%20using%20'jmp.open'%0A%0A%23%20train1%20%3D%20jmp.open('D%3A%2Fsteve.kim%2FKaggle%2FBI%20Biological%20Response%2Ftrain1.csv')%0A%23%20y1%20%3D%20jmp.open('D%3A%2Fsteve.kim%2FKaggle%2FBI%20Biological%20Response%2Fy1.csv')%0A%0A%0A%0A%23%2001%20Modeling%20training%20-%20Library%20import%0Afrom%20lightgbm%20import%20LGBMClassifier%0A%0A%23%2002%20Modeling%20training%20-%20LGBM%20Baseline%20model%20without%20hyperparameter%20tuning%0Algb%20%3D%20LGBMClassifier()%0A%0A%23%2003%20Modeling%20training%20-%20define%20X%20(factors)%20and%20Y%20(responses)%20variables%0Algb.fit(train1%2C%20y1)%20%23%20lightgbm.basic.LightGBMError%3A%20Length%20of%20labels%20differs%20from%20the%20length%20of%20%23data%0A%0A%23%2004%20Predict%0Apredslgb%20%3D%20lgb.predict_proba(test1)%3C%2FCODE%3E%3CBR%20%2F%3E%3CBR%20%2F%3E%3C%2FPRE%3E%3CP%3E%20%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-LABS%20id%3D%22lingo-labs-752565%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3E%3CLINGO-LABEL%3E%E4%BA%88%E6%B8%AC%E3%83%A2%E3%83%87%E3%83%AA%E3%83%B3%E3%82%B0%E3%81%A8%E6%A9%9F%E6%A2%B0%E5%AD%A6%E7%BF%92%3C%2FLINGO-LABEL%3E%3C%2FLINGO-LABS%3E%3CLINGO-SUB%20id%3D%22lingo-sub-754129%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3ERe%3A%20JMP18%20Python%20%E3%82%B9%E3%82%AF%E3%83%AA%E3%83%97%E3%83%88%E3%82%92%E4%BD%BF%E7%94%A8%E3%81%97%E3%81%A6%E6%A9%9F%E6%A2%B0%E5%AD%A6%E7%BF%92%E3%83%A2%E3%83%87%E3%83%AA%E3%83%B3%E3%82%B0%E3%82%92%E5%AE%9F%E8%A1%8C%E3%81%99%E3%82%8B%E3%81%AB%E3%81%AF%E3%81%A9%E3%81%86%E3%81%99%E3%82%8C%E3%81%B0%E3%82%88%E3%81%84%E3%81%A7%E3%81%99%E3%81%8B%3F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-754129%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3E%3CP%3E%3CSHELF%20answer%3D%22%22%3E%20%3C%2FSHELF%3E%3C%2FP%3E%3CP%3E%E3%81%93%E3%81%AE%E8%B3%AA%E5%95%8F%E3%81%AB%E3%81%A4%E3%81%84%E3%81%A6%E3%81%AF%E7%94%B3%E3%81%97%E8%A8%B3%E3%81%82%E3%82%8A%E3%81%BE%E3%81%9B%E3%82%93%EF%BC%81%3C%2FP%3E%3CP%3EPython%20pandas%20%E3%81%A8%20lightGBM%20%E3%81%AF%20JMP18%20Python%20%E3%82%B9%E3%82%AF%E3%83%AA%E3%83%97%E3%83%88%E3%81%A7%E6%AD%A3%E5%B8%B8%E3%81%AB%E5%8B%95%E4%BD%9C%E3%81%97%E3%81%A6%E3%81%84%E3%81%BE%E3%81%99!%20%3A%20)%3C%2FP%3E%3CP%3E%20%3C%2FP%3E%3CP%3E%20%3C%2FP%3E%3CPRE%3E%3CCODE%20class%3D%22%20language-jsl%22%3Eimport%20jmp%0Aimport%20jmputils%0A%0A%23%20update%20to%20latest%20version%20of%20pip%20(Package%20Installer%20of%20python)%20and%20setuptools%20then%20install%20numpy%20%26amp%3B%20pandas%0Ajmputils.jpip('install%20--upgrade'%2C%20'pip%20setuptools')%0Ajmputils.jpip('install'%2C%20'pandas%20numpy%20scikit-learn%20keras%20lightgbm')%0A%0A%23%20Checking%20package%20version%0Ajmputils.jpip('list')%0A%0A%0A%23%20Import%20package%0Aimport%20numpy%20as%20np%20%23%20linear%20algebra%0Aimport%20pandas%20as%20pd%20%23%20data%20processing%2C%20CSV%20file%20I%2FO%20(e.g.%20pd.read_csv)%0A%0A%23%20Any%20results%20you%20write%20to%20the%20current%20directory%20are%20saved%20as%20output.%0Aimport%20os%0Aprint%20(os.listdir(%22D%3A%2Fsteve.kim%2FKaggle%2FBI%20Biological%20Response%22))%0A%0A%23%20Load%20data%0Atrain_x%20%3D%20pd.read_csv('D%3A%2Fsteve.kim%2FKaggle%2FBI%20Biological%20Response%2Ftrain_x.csv')%0Aprint(train_x.head())%0A%0Atrain_y%20%3D%20pd.read_csv('D%3A%2Fsteve.kim%2FKaggle%2FBI%20Biological%20Response%2Ftrain_y.csv')%0Aprint(train_y.head())%20%20%0A%0Atest_x%20%3D%20pd.read_csv('D%3A%2Fsteve.kim%2FKaggle%2FBI%20Biological%20Response%2Ftest_x.csv')%0Aprint(test_x)%0A%0A%0A%23%20Modeling%0Afrom%20lightgbm%20import%20LGBMClassifier%20%20%0Algb%20%3D%20LGBMClassifier(colsample_bytree%3D0.6%2C%20subsample%3D0.8)%0Algb.fit(train_x%2C%20train_y)%0Apreds_lgb%20%3D%20lgb.predict_proba(test_x)%0A%0Asub_lgb%20%3D%20pd.read_csv('D%3A%2Fsteve.kim%2FKaggle%2FBI%20Biological%20Response%2Ftest_y.csv')%0Asub_lgb%5B%22Activity%22%5D%20%3D%20preds_lgb%5B%3A%2C1%5D%0Aprint(sub_lgb.head())%0Atest_answer%20%3D%20pd.read_csv('D%3A%2Fsteve.kim%2FKaggle%2FBI%20Biological%20Response%2Ftest_answer.csv')%0A%0A%23%20Evaluation%0Afrom%20sklearn.metrics%20import%20mean_absolute_error%2C%20mean_squared_error%2C%20mean_absolute_percentage_error%0Aprint('LightGBM%20MAE')%0Aprint(mean_absolute_error(test_answer%2C%20sub_lgb))%0Aprint('LightGBM%20MSE')%0Aprint(mean_squared_error(test_answer%2C%20sub_lgb))%3C%2FCODE%3E%3C%2FPRE%3E%3CP%3E%3CSHELF%3E%3C%2FSHELF%3E%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-754088%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3ERe%3A%20JMP18%20Python%20%E3%82%B9%E3%82%AF%E3%83%AA%E3%83%97%E3%83%88%E3%82%92%E4%BD%BF%E7%94%A8%E3%81%97%E3%81%A6%E6%A9%9F%E6%A2%B0%E5%AD%A6%E7%BF%92%E3%83%A2%E3%83%87%E3%83%AA%E3%83%B3%E3%82%B0%20(LGBM)%20%E3%82%92%E5%AE%9F%E8%A1%8C%E3%81%99%E3%82%8B%E3%81%AB%E3%81%AF%E3%81%A9%E3%81%86%E3%81%99%E3%82%8C%E3%81%B0%E3%82%88%E3%81%84%E3%81%A7%E3%81%99%E3%81%8B%3F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-754088%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3E%3CP%3E%E3%81%82%E3%81%82...%20%E3%82%B3%E3%83%BC%E3%83%89%20'head()'%20%E3%81%AF%E3%80%81Jupyter%20%E3%83%8E%E3%83%BC%E3%83%88%E3%83%96%E3%83%83%E3%82%AF%E3%81%A7%E3%81%AF%E3%81%AA%E3%81%8F%E3%82%BF%E3%83%BC%E3%83%9F%E3%83%8A%E3%83%AB%E7%92%B0%E5%A2%83%E3%81%A8%E3%81%97%E3%81%A6%E8%80%83%E3%81%88%E3%81%A6%E3%81%BF%E3%82%8B%E3%81%A8%E3%80%81%E6%AD%A3%E5%B8%B8%E3%81%AB%E5%8B%95%E4%BD%9C%E3%81%97%E3%81%A6%E3%81%84%E3%81%BE%E3%81%99%E3%80%82%3C%2FP%3E%3CP%3E%20%3C%2FP%3E%3CPRE%3E%3CCODE%20class%3D%22%20language-jsl%22%3Ey1%20%3D%20pd.read_csv('D%3A%2Fsteve.kim%2FKaggle%2FBI%20Biological%20Response%2Fy1.csv')%0Aprint(y1.head())%20%3C%2FCODE%3E%3C%2FPRE%3E%3CP%3E%E3%81%99%E3%82%8B%E3%81%A8%E3%80%81%E5%9F%8B%E3%82%81%E8%BE%BC%E3%81%BE%E3%82%8C%E3%81%9F%E3%83%AD%E3%82%B0%E3%81%8B%E3%82%89%E3%82%B3%E3%83%BC%E3%83%89%E3%81%AE%E7%B5%90%E6%9E%9C%E3%82%92%E5%8F%96%E5%BE%97%E3%81%A7%E3%81%8D%E3%81%BE%E3%81%99%E3%80%82%3C%2FP%3E%3CP%3E%E3%81%A0%E3%81%8B%E3%82%89%E6%AE%8B%E3%82%8A%E3%81%AE%E5%95%8F%E9%A1%8C%E3%82%82%E8%A7%A3%E6%B1%BA%E3%81%A7%E3%81%8D%E3%82%8B%E3%81%A8%E6%80%9D%E3%81%84%E3%81%BE%E3%81%99%E3%80%82%3C%2FP%3E%3CP%3E%20%3C%2FP%3E%3CPRE%3E%3CCODE%20class%3D%22%20language-jsl%22%3E%20%20%20Activity%0A0%20%20%20%20%20%20%20%20%201%0A1%20%20%20%20%20%20%20%20%201%0A2%20%20%20%20%20%20%20%20%201%0A3%20%20%20%20%20%20%20%20%201%0A4%20%20%20%20%20%20%20%20%201%3C%2FCODE%3E%3C%2FPRE%3E%3CP%3E%20%3C%2FP%3E%3C%2FLINGO-BODY%3E
Choose Language Hide Translation Bar
Steve_Kim
Level IV

How can I perform Machine Learning Modeling using JMP18 Python Script?

Hello,
I am working on creating a LightGBM model using a JMP Python script (JMP18).
My current setup is as follows:
  - X variables: "train1.csv" file, columns D1 through D1776
  - Y variable: "y1.csv" file, "Activity" column

  - Prediction target "Activity": "test1.csv" file, columns D1 through D1776
  - Note: Original file "train_original.csv" file, columns Activity through D1776. from Kaggle.com  (Predicting a Biological Response)


I would appreciate it if somebody can provide the guidance for the following issues:
- Cannot perform LightGBM modeling  in JMP18 python environment

I've included my JMP Python script below for your reference. See the followings for details.
Thank you for your time in advance! : )

 

 

 

import jmp
import jmputils

# update to latest version of pip (Package Installer of python) and setuptools then install numpy & pandas
jmputils.jpip('install --upgrade', 'pip setuptools')
jmputils.jpip('install', 'pandas numpy scikit-learn keras lightgbm')

# Import package
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)



# Load data
train1 = pd.read_csv('D:/steve.kim/Kaggle/BI Biological Response/train1.csv')
y1 = pd.read_csv('D:/steve.kim/Kaggle/BI Biological Response/y1.csv')
test1 = pd.read_csv('D:/steve.kim/Kaggle/BI Biological Response/test1.csv')

train1.head() # No Result in JMP, but it's okay. It's fine to open the datatable using 'jmp.open'
y1.head() # No Result in JMP, but it's okay. It's fine to open the datatable using 'jmp.open'

# train1 = jmp.open('D:/steve.kim/Kaggle/BI Biological Response/train1.csv')
# y1 = jmp.open('D:/steve.kim/Kaggle/BI Biological Response/y1.csv')



# 01 Modeling training - Library import
from lightgbm import LGBMClassifier

# 02 Modeling training - LGBM Baseline model without hyperparameter tuning
lgb = LGBMClassifier()

# 03 Modeling training - define X (factors) and Y (responses) variables
lgb.fit(train1, y1) # lightgbm.basic.LightGBMError: Length of labels differs from the length of #data

# 04 Predict
predslgb = lgb.predict_proba(test1)

 

2 ACCEPTED SOLUTIONS

Accepted Solutions
Steve_Kim
Level IV

Re: How can I perform Machine Learning Modeling (LGBM) using JMP18 Python Script?

Oh... The code 'head()' is woking well after I consider it as a terminal environment not the jupyter notebook! 

 

y1 = pd.read_csv('D:/steve.kim/Kaggle/BI Biological Response/y1.csv')
print(y1.head()) 

then I can get the code result from embedded Log!

So I think I can resolve the rest of things as well. 

 

   Activity
0         1
1         1
2         1
3         1
4         1

 

View solution in original post

Steve_Kim
Level IV

Re: How can I perform Machine Learning Modelingusing JMP18 Python Script?

<Shelf Answer> 

Sorry about this question!

The python pandas and lightGBM are working well in JMP18 python script! : )

 

 

import jmp
import jmputils

# update to latest version of pip (Package Installer of python) and setuptools then install numpy & pandas
jmputils.jpip('install --upgrade', 'pip setuptools')
jmputils.jpip('install', 'pandas numpy scikit-learn keras lightgbm')

# Checking package version
jmputils.jpip('list')


# Import package
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

# Any results you write to the current directory are saved as output.
import os
print (os.listdir("D:/steve.kim/Kaggle/BI Biological Response"))

# Load data
train_x = pd.read_csv('D:/steve.kim/Kaggle/BI Biological Response/train_x.csv')
print(train_x.head())

train_y = pd.read_csv('D:/steve.kim/Kaggle/BI Biological Response/train_y.csv')
print(train_y.head())  

test_x = pd.read_csv('D:/steve.kim/Kaggle/BI Biological Response/test_x.csv')
print(test_x)


# Modeling
from lightgbm import LGBMClassifier  
lgb = LGBMClassifier(colsample_bytree=0.6, subsample=0.8)
lgb.fit(train_x, train_y)
preds_lgb = lgb.predict_proba(test_x)

sub_lgb = pd.read_csv('D:/steve.kim/Kaggle/BI Biological Response/test_y.csv')
sub_lgb["Activity"] = preds_lgb[:,1]
print(sub_lgb.head())
test_answer = pd.read_csv('D:/steve.kim/Kaggle/BI Biological Response/test_answer.csv')

# Evaluation
from sklearn.metrics import mean_absolute_error, mean_squared_error, mean_absolute_percentage_error
print('LightGBM MAE')
print(mean_absolute_error(test_answer, sub_lgb))
print('LightGBM MSE')
print(mean_squared_error(test_answer, sub_lgb))

<Shelf  

View solution in original post

2 REPLIES 2
Steve_Kim
Level IV

Re: How can I perform Machine Learning Modeling (LGBM) using JMP18 Python Script?

Oh... The code 'head()' is woking well after I consider it as a terminal environment not the jupyter notebook! 

 

y1 = pd.read_csv('D:/steve.kim/Kaggle/BI Biological Response/y1.csv')
print(y1.head()) 

then I can get the code result from embedded Log!

So I think I can resolve the rest of things as well. 

 

   Activity
0         1
1         1
2         1
3         1
4         1

 

Steve_Kim
Level IV

Re: How can I perform Machine Learning Modelingusing JMP18 Python Script?

<Shelf Answer> 

Sorry about this question!

The python pandas and lightGBM are working well in JMP18 python script! : )

 

 

import jmp
import jmputils

# update to latest version of pip (Package Installer of python) and setuptools then install numpy & pandas
jmputils.jpip('install --upgrade', 'pip setuptools')
jmputils.jpip('install', 'pandas numpy scikit-learn keras lightgbm')

# Checking package version
jmputils.jpip('list')


# Import package
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

# Any results you write to the current directory are saved as output.
import os
print (os.listdir("D:/steve.kim/Kaggle/BI Biological Response"))

# Load data
train_x = pd.read_csv('D:/steve.kim/Kaggle/BI Biological Response/train_x.csv')
print(train_x.head())

train_y = pd.read_csv('D:/steve.kim/Kaggle/BI Biological Response/train_y.csv')
print(train_y.head())  

test_x = pd.read_csv('D:/steve.kim/Kaggle/BI Biological Response/test_x.csv')
print(test_x)


# Modeling
from lightgbm import LGBMClassifier  
lgb = LGBMClassifier(colsample_bytree=0.6, subsample=0.8)
lgb.fit(train_x, train_y)
preds_lgb = lgb.predict_proba(test_x)

sub_lgb = pd.read_csv('D:/steve.kim/Kaggle/BI Biological Response/test_y.csv')
sub_lgb["Activity"] = preds_lgb[:,1]
print(sub_lgb.head())
test_answer = pd.read_csv('D:/steve.kim/Kaggle/BI Biological Response/test_answer.csv')

# Evaluation
from sklearn.metrics import mean_absolute_error, mean_squared_error, mean_absolute_percentage_error
print('LightGBM MAE')
print(mean_absolute_error(test_answer, sub_lgb))
print('LightGBM MSE')
print(mean_squared_error(test_answer, sub_lgb))

<Shelf  

Recommended Articles