First of all, the design of the experiment (the set of treatments) does not affect the accuracy of the estimates. That is, the bias of the estimates (parameter or response) does not depend on the design. The bias of the estimates depends on the form of the model.
Secondly, the design does affect the variance of the estimates. This effect, in turn, affects the power. As the variance of the estimates increases, the power decreases.
Thirdly, power is not related to the bias of the model. Power is defined as the probability of not making a type II error. It is only possible if the alternative hypothesis (the parameter is not zero) is true. Power depends on the effect size, the response variance, the sample size (DF really), and the significance level. Low power means that there is a small chance of finding a real effect (non-zero) to be statistically significant.
I would not trust a model until, after it has been fit, it has been independently validated with new observations. I recommend testing two conditions: the condition that is predicted to deliver the desired outcome and another condition that predicts an awful outcome. You can trust the model to generally predict all outcomes well that way.
As a side note, be careful when comparing designs. I did not see a big difference in the power using continuous factors versus numeric discrete factors if I was careful to over-ride automatic actions by JMP that changed the number of runs, the model terms, and so forth. I am not saying that the power you observed is wrong. I am just saying that it is easy to get power values that are not comparable.