Choose Language Hide Translation Bar

Leveraging JMP Analytics to Drive Innovation in High-Throughput SynBio Analytical Sciences - (2023-US-30MP-1441)

This presentation demonstrates the use of JMP for a practical real-world application in high-throughput analytical chemistry; it also highlights the power of even basic JMP functionality to reduce costs without affecting data quality. This talk provides a compelling introduction to the synthetic biology industry, which is at the cutting edge of scientific discovery, aiming to revolutionize how to manufacture chemicals sustainably. 

 

At Amyris, hundreds of thousands to millions of different strains are created each year. Each strain is screened using various analytical platforms to identify improvements, allowing us to link genetic coding to specific phenotypes. This scale pushes the boundaries of today’s automation and analytical technologies, consequently challenging the scalability of conventional approaches to analytical chemistry.

 

This talk highlights not only the use of JMP as a powerful tool to make a complex analysis easy but also demonstrates the use of the workflow builder to enable general users to perform these analyses. A business case is shown in which JMP helped analyze and improve analytic calibration protocols in the lab. 

 

 

Today  we're  going  to  be  talking about  using  JMP,  our  favorite  software

and  applying  it  to  a  real- world  problem in  our  analytical  sciences  department

at  Amyris  which  is  a  symbio  company.

Before  we  jump  into  that, I  wanted  to  introduce  myself  as  well  as

Scott,  who  helped  me  along  this  journey.

I'm  Stefan,  I'm  an  associate  director of  R& D  data  analytics A myris.

I  have  twelve  years of  industry  experience,

a  lot  of  diverse  background, I've  worked  in  various  labs

from  analytical  chemistry  to  fermentation science  and  in  more  recent  years

focused  more  on  the  quality and  data  science  side  of  things.

Scott  has  helped  me in  a  lot of  the  content  here

and  has  been  working  with  Amyris for  a  number  of  years

and  he  is  one  of  the  JMP  pros working  for JMP.

I'd  like  to  start  off  by  just  saying  thank you  to  Scott  for   helping  us  out  here.

We're  going  to  split the  talk  today  into  three  parts.

I'm  going  to  give  a  bit  of  background and  context  both  on  synthetic  biology,

if  you  haven't  heard  of  that  before, and  analytical  chemistry.

The  main  part  of  the  talk  is  really  going to  be  focused  on  then  applying  JMP

to  a  specific  question  we  had and  then  finally  we'll  wrap  it  up

briefly  touching  on  automation and  then  the  impact

of  the  analysis  and  this  case study  we'll  look  at  together.

S ome  of  you  may  not  be  familiar with  synthetic  biology

or  analytical  chemistry and  I  really  like  to  understand

context  and  background and  is  going  to  be  relatively  important

for  the  case  study  we  look  at, we'll  focus  on  that  today  and  start  there.

S ynthetic  biology  really leverages  microorganisms,

as  we  like  to  call  them, as  living  factories.

We  use  mainly  yeast  in  the  case of  Amyris  that  we  precision  engineer,

and  we  use  the  process  of  fermentation, which  is  not  a  new  thing  it's  something

people  have  been  using  for  thousands of  years,  mainly  to  make  alcohol

and  bread  in  a  lot  of  cases.

In  our  case, we're  using  the  yeast  in  fermentation,

feeding  it  sugar  and  converting that  sugar  into  a  variety  of  target

ingredients  and  chemicals.

Those  ingredients and  chemicals  we  can  then  make

higher  purity  so  they  may  be higher  performing  lower  costs

and  in  a  more  sustainable  fashion.

To  give  an  example, this  isn't  just  a  fairy  tale.

This  is  reality,  it's  not  an  idea,  we  have

18  molecules  today  that we  manufacture  at  scale  and  I'm  showing

a  subset  of  those  here.

There's  an  example  on the  top  left  you  have  Artemisinin.

That's  an  antimalarial  drug, it  was  our  first  molecule

and  that's  how  our  company  was  founded.

In  the  top  middle,  we  have  Biophene which  is  actually  a  powerful

building  block  that  we  then  convert into  other  chemicals  and  applications.

One  example  being  Squalene  which  is  a

very  popular  emollient  used in  the  cosmetics  industry

and  traditionally is  sourced  from  shark  livers

and  one  that  might  be  familiar in  the  bottom  middle,  we  have  patchouli.

Some  people  associate  that with  the  hippie  smell,  it's  a  fragrance,

but  it's  actually  really  ubiquitous in  the  fragrance  industry

as  a  base  note, so  it  goes  into  thousands  of  products.

Things  like  Tide  detergent  have  patchouli in  it  and  we  can  manufacture  this,

which  is  traditionally extracted  from  plants

with  our  synthetic  biology  platform.

I  work  in  the  R&D  function, and  so  our  goal  is  really  to  identify

the  best  E  strains  that  we  can then  use  at  manufacturing  scale,

and  that  requires  research  at  scale.

We  run  highly  automated a  lot  of  high- throughput  workflows

at  Amyris  in  Emeryville,  and  so from  the  left  there  we  start  screening

our  yeast  strains

at  a  capacity  of  about 600,000  strains  per  month.

We  take  those  top  performers and  we  promote  them

to  what  we  call our  bench- scale  bioreactor  fermentations,

which  you  can  see pictured  on  the  right  there.

Throughout  all  of  this, we're  creating  a  lot  of  strains,

which  means  we  also  need  to  understand what's  happening  in  those  strains,

what  are  they  producing,  how  much,  and that's  really  where  analytics  come  in.

Those  analytics  need  to  be  run at  a  scale  to  match  that  so  we  can  really

get  the  data  to  understand what's  happening.

With  this  scale  of research,  there's  a  lot  of  opportunities,

and  a  lot  of  those  opportunities  come from  looking  at  conventional

approaches  and  reconsidering how  to  do  those.

I will talk  a  little  bit  about analytical  chemistry.

Again,  that's  not  anything  that's unique  to  synthetic  biology.

It's  pervasive  in  a  lot  of  industries, petroleum  industry,

environmental  sciences,  pharma, very  common  way  just  to  measure  things.

I'll  talk  here  really about  chromatography,

and  as  an  example,  I'll  take  fermentation that  we  do  on  the  bioreactive  scale.

From  this  fermentation,  we're  going to  sample  that  while  it's  running.

We're  going  to  get  a  dirty  sample  from that  which  we  then  can  further

prepare  and  dilute.

We  have  this  mixture of  components  in  this  final  form.

We'll  then  take this  mixture  of  components,

we'll  run  it  across some  separation  techniques.

That's  a  chromatograph.

What  that's  going  to  do  is  based on  the  property  of  those  components,

might  be  size,  it  might  be  polarity, it'll  allow  us  to  separate  those  out.

We  then  feed  that  into some  detection  mechanism.

There's  a  variety  that  you  can  use and  what  that  gives  you  is  a  separation

of  these  components  over  time and  then  some  intensity  of  response.

The  last  piece  and  where we're  going  to  focus  today

is  intensity  isn't  really  a  useful  thing for  you  or  me  to  make  decisions  on.

We  need  to  translate  that  into something  useful  like  a  concentration.

The  calibration  curve allows  us  to  translate

that  intensity  into  a  concentration,

and  of  course,  you  can  imagine if  you  get  that  translation  wrong,

your  data  is  going  to  be  wrong and  it's  going  to  mislead  you.

Calibration  curves is  where  we'll  focus  today,

and  that's  the  heart  of  the  question.

A  calibration  curve  is  created, by  running  standards  with

varying  levels  of  your  known  component.

The  example  I'm  showing  here,

we  have  a  low  mid- high, so  a  three  -evel  calibration.

We  know  what  the  concentration  is in  those  because  we  prepared  them,

and  we  measure the  response  on  these  instruments.

From  there, we  can  fit  some  calibration  curve.

In  this  example,  I'm  showing just  a  simple  linear  fit,

and  then  we  can  run  unknown  samples,

read  the  response  off  our  instrument and  do  an  inverse  prediction.

We're  taking  our  response  from  the  Y and  predicting  what  the  quantity is

in  that  sample.

It's  a  very  common  way  to  be  able to  quantify  things  in  unknown  samples.

That's  our  background.

We're  going  to  jump  into  the  case study  looking  at  this  key  question

we  had  around  optimizing  a  part of  our  process  in  our  analytics.

A bit  more  background  here  is  that when  we  do  calibration  in  our  labs,

there's  a  cost  associated maintenance  of  these  calibrations

and  calibration  curves  and calibration  standards  is  expensive,

both  due  to  people's  time, but  also  materials.

These  materials  can  often  cost  thousands, even  tens  of  thousands

of  dollars  per  gram.

With  the  scale  that  we're  doing  our research  at,  it  really  pushes  us

again  to  reconsider  those conventional  approaches.

We're  running  millions  of  samples per  year,  and  we  have  a  really  diverse

set  of  analytical  methods so  we  have  currently

in  our  lab  in  Emeryville,

over  100  different  analytical  methods measuring  all  components.

One  place  we  looked  at  is  conventionally.

We  see  this  with   most  people  we  hire, this  is  where  people  start.

Conventionally  calibration  curves often  have  five  to  seven  levels,

whether  they're  linear  or  not.

We  think  about  they  say,  okay, five  to  seven  levels,  linear  fit.

In  theory,  the  most  you  might  need  is or  the  minimum  you  might  need  is  two

and  there's  a  cost to  each  additional  level,

both  in  materials and  preparation  costs  and  maintenance.

This  is  where  we  wanted to  look  and  ask  the  question,

look,  can  we  actually  reduce this  number  for  an  existing  method

without  significant impact  on  our  actual  data  quality?

The  way  we  quantify  our  unknown  samples.

This  is  where  JMP  comes  in, we're  going  to  use  Jump  here  to  simulate

some  alternative  calibration schemes,  in  this  case,

reducing  the  number of  levels  of  calibrations

and  to  reiterate  what  we've  walked through  our  problem  ultimately  is  that

calibration  maintenance  is  costly.

That's  exasperated by  the  scale  we  do  it  at.

Our  general  approach  is  really  going  to  be to  look  at  how  can  we  optimize  this.

Let's  look  at  reducing  the  levels of  those  calibrations,

and  then  our  specific  solution is  using JMP  here

to  ask  the  question,  look, if  we  went  back  in  time

and if  theoretically,  we  had  run  two calibrators  or  three  calibrators

instead  of  six  or  seven,  how  would that  have  impacted  our  data?

Our  case  here,  we're  going to  focus  on  a  single  method  today.

This  is  a  real  method  we've  been running  for  about  six  months.

We  have  22  batches of  samples  we've  run  on  this  method,

so  it's  about  1000  samples.

Our  existing  calibration  I  show  here on  the  right  is  a  linear  calibration.

It  has  six  levels  and we've  estimated  if  we  can  reduce  this

to  the  minimum  of  two  levels,  we could  save  an  estimate  of  $15,000  a  year.

There's  a  real  measurable  motivation to  understand  if  we  can  pursue  this.

Showing  here  the  general workflow  that  we  came  up  with.

I'm  going  to  go  through  this really  quickly  right  now  but  no  worries.

We're  going  to  walk  through it  step  by  step  together.

We're  really  going  to  just pull  the  historical  data.

We're  going  to  recreate  our  historical calibration  in  JMP  to  validate  what

we're  doing  in  JMP  matches what  we've  done  historically,

and  then  we're  going  to  say,  okay, let's  eliminate  some  of  these  levels,

recreate  the  calibration with  those  reduced  levels,

and  then  evaluate what  impact  that  has  on  our  targets.

Now,  I  think  in  this  case  it's  also  really important  to  emphasize  you  see,

we  have  two  pass- fail  forks  in  the  road.

Often  when  we're  doing  analysis

on  data  in  hand, we're  looking  for  statistical  significance

with  studies  like  this,  it's  really important  to  determine  what  your  practical

requirements  are.

In  this  case,  what  does  that  mean?

We're  talking  about  impact on  the  measurement  of  unknown  samples.

Ultimately,  we  want  to  make  sure that  reducing  the  calibration  is  not  going

to  bias  the  measurement in  one  way  or  the  other.

We  want  the  measurement  to  be  the  same.

As  many  people  will  tell  you,  the  same is  not  really  a  quantifiable  thing,

it  depends  on  your  sample  size, the  noise  in  your  process.

We  need  to  define  what  is  no  different, same  or  no  impact  mean.

Here  we're  going  to  set  our acceptance  criteria  ahead  of  time

for  this  first  step  as  accuracy within  half  the  percent,

and  for  the  second  step as  accuracy  within  1%.

We'll  see  these  come  back  as we  walk  through  this.

Our  first  step,  and  every  page  here, I'm  going  to  show  in  the  top  right

what  step  we  are  in  the  process,

as  well  as  highlighting what  JMP  platforms  we're  using.

For  our  first  step,  we're  going to  be  pulling  our  historical  data

from  a  database,  in  our  case, we  have  a  database.

We  have  a  Lin  system  that  already has  the  data  in  a  structured  format.

You  could  also  import  this  from  CSV, however,  you  can  access  the  data.

We're  pulling  it  in  our  case using  raw  SQL  and  JSL

and  it  pulls  in  a  structured  format showing  a  subset  of  the  columns  we  have,

but  what  you'll  notice  is  in  this  case we  have  our  six  calibrators

as  well  as  a  number  of  unknown  samples.

We're  pulling  in  the  historical  data  as the  core  data  set  we're  working  with.

The  first  step  is  recreating and  validating  the  same  calibration  curve

so  that  same  six- point calibration  in  JMP.

Now,  you  might  ask why  we  have  to  do  this.

There are  two  main  reasons.

One  is  calibration  curves  can have  a  lot  of  caveats.

They  can  have  weighting, they  can  have  anchor  points,

they  could  be  forced  through  zero, they  could  be  nonlinear.

This  is  a  good  way  to  validate that  you're  using  the  right

parameters  and  JMP  to  recreate  this.

The  other  reason  is  that  we  don't  expect these  values  to  be  exactly  the  same.

The  reason  being  that  a  lot  of  these analytical  software  uses  some  proprietary

regression  that  is  not  exactly  like,  let's say,  ordinary  least  squares  regression.

To  do  this,  we're  going  to  use  a specialized  modeling  fit  curve  parameter

and  really  just recreating  our  calibration  curve.

Just  like  I  showed  earlier,

where  we  have  our  known  quantity  of  our six  standards  on  the  X

and  our  raw  intensity or  signal  response  on  the  Y.

In  our  case,  we  have  22  batches, I'm  not  showing  all  of  them  here,

but  we're  reproducing  this  for  22 different  sequences  in  essentially  one

click  and  what  I  call  the  power  of  the Control  key  if  you  don't  know  this  trick.

Will  save  you  a  ton  of  time, if  you  hold  down  the  Control  key,

click  on  the  red  button,  whatever you  do  is  going  to  apply  to  every

analysis  in  that  window.

Recently  learned  that's apparently  called  broadcasting,

so  you  could  use  that  as  well.

We're  recreating  a  calibration  curve for  each  of  our  batches

and  then  in  the  same  specialized modeling  platform,  we're  then

saving  the  inverse prediction  formula.

Because  we're  predicting  from  Y  to  X,

if  you  remember  back to  our  calibration  intro,

to  be  able  to  save  the  predicted values  back  to  our  data  table.

This  then  looks  like  this where  on  our  data  table

we  have  first  our  historical  quantity, what  we  pull  from  the  database,

and  now  we  have  our  raw  quantity that  we  generated  from

these  newly  created calibration  curves  and  JMP.

We  have  a  multiplier  we  have  to  apply, do  the  sample  prep  we  do

that  we  pull  from  the  database so  that's  already  there

and  it's  going  to  stay  constant.

We  simply  need  to  just  apply a  calculated  column  here

to  have  a comparative  value  to  our  historical  data.

If  you  look  in  this  first  raw, our  value  is  very  close  to

but  not  exactly  the  same as  our  historical  data.

Next  up,  we're  going  to  visually do  a  comparison,  plotting  our  historical

against  the  JMP  recreation of  that  calibration,

and  this  is  a  good  check again,  to  look  through  your  data.

What  you  would  expect  or  hope  for  is

a  line  that  essentially looks  like  Y  equals  X.

Now  we  don't  want  to  stop at  a  visual  analysis.

We  of  course,  want  to  bring some  statistics  into  it.

This  is  where  we  introduced the  passing  Bablock  regression.

It's  actually  something  that  was  just added  into  the  base  jump  functionality.

I  think  with  JMP  17  used  to  be an  add- on  for  a  long  time.

I'm  glad  it's  there  now.

This  is  a  specialized  regression that's  non- parametric  and  robust  outliers,

that's  really  designed  specifically for  comparing  analytical  methods.

For  many  of  you,  probably  irrelevant you're  never  going  to  have  to  use  it,

but  we  need  to  use  it in  the  world  we're  working  in.

What  this  regression  does, it  gives  you  two  hypothesis  tests

to  test  for  constant  bias  as well  as  proportional  bias.

S tarting  with  a  constant  bias, where  we're  seeing  if  there's  bias.

Imagine  the  line  moving  up and  down  the  same  across  the  range.

We're  evaluating  if  the  confidence interval  of  our  intercept

does  or  does  not  include  zero.

For  proportional  bias,  where  the  bias would  change  based  on  the  response.

We're  evaluating  if  the  confidence interval  of  our  slope

does  or  does  not  include  one.

Now  in  our  case,  we  reject  the null  hypotheses  in  both  of  these  cases,

which  tells  us  that  we  do have  statistically  significant  bias,

both  constant and  proportional  in  our  data  set.

From  here  you  might  say,  okay, we're  done  there's  bias  we  can't  move  on,

but  thinking  back,  this  is  why it's  really  important  to  define

what  the  practical significance  is  because

any  statistician  will  tell  you  in our  data  set  we  have  1000  samples,

you  have  1,000  samples you're  going  to  be  looking  at

very  tight  confidence  intervals.

You're  going  to  be  able  to  detect very  small  differences.

We  have  a  statistically significant  difference  but  does  it  matter?

That  brings  us  to  our  last  step we're  going  to  calculate,

again  using  the  column  formula,

the  relative  difference between  the  two  methods

and  I'm  showing a  distribution  of  that  below

and  that  distribution  then gives  us  access  to  this  test  equivalence.

This  allows  you  to  test  a  distribution of  values  against  the  constant

that  you  define  within  some  confidence.

Here  in  this  window, we'll  enter  our  target  mean  is  zero

because  we  hypothesized  that  they're going  to  be  the  same  so  no  difference.

Now  we  get  to  enter  our  acceptance criteria,  which  was  0.5%.

This  gives  us  this  very  nice  output with  our  final  two  hypotheses

tests  where  if  we  reject  these, we  can  determine  essentially  that  the  mean

of  this  data  set  is  equivalent  to  zero within  plus  or  -0.5%.

This  one  you  might  say,  hey  Stefan, this  is  doing  a  t- test,

your  distribution  is  not  exactly  normal and  I  think  you'd  be  right

and  if  I  went  back  I  might  actually use  the  test  mean  platform

because  that  gives  you  access to  non- parametric  equivalence  tests.

Regardless,  this  is  a  really  useful and  direct  way  to  test

for  practical  significance.

We've  pulled  our  historical  data from  the  database,

we've  recreated  and  evaluated the  calibration  curve

and  we've  established  that  it  passes our  acceptance  criteria.

If  it  had  failed,  it  could be  an issue  with  the  data  set.

You  might  not  be  using  the  right calibration  parameters.

There are  a  number  of  reasons, we  generally  would

pretty  much always  expect  this  to  pass.

It  usually  just  requires  some investigation  to  what's  going on

in  the  way  you  recreated this  calibration.

Our  next  step  is  down- sampling or  reducing  the  number  of  levels

of  our  calibration.

Now,  if  we  try  to  do  this  without  JMP, we  have  to  go  into  every  single

sequence  in  our  analytical software  manually

remove  calibrators, recalculate  things.

Be  really  long  and  tedious  thing.

JMP  this  is  as  easy  as  just using  the  data  filter.

In  our  case  with  this  six- point calibration  we  have  a  linear  one.

We  know  that  the  minimum  number of  points  we  need  for  linear  fix is  two.

We're  picking  the  highest and  the  lowest  calibrators

and  just  filtering  down  to  those.

From  here  I'm  going  to  go  pretty  quickly, but  really  all  we're  going  to  do

is  recreate  this  calibration with  two  points  in  JMP.

Again,  we're  using  the  specialized modeling  platform,  doing  a  fit  line.

The  only  difference  now is  we  have  two  points  instead  of  six

and  we're  applying  that  inverse  prediction formula  back  to  the  data  table,

which  again  is  going  to  give us  our  inverse  prediction

and  then  we  apply  the  multiplier

and  because  I  know  I'm  going  to  do the  practical  significance,

I'm  just  going  to  preemptively  calculate a  relative  difference  between

the  two- point  calibration  and  then the  historical  difference.

Again,  we  go  through  the  Passing  Babock and  not  so  surprisingly,

again  considering the  size  of  our  data  set,

we're  going  to  reject  the  null hypothesis  here  and  establish  that  we  have

statistically  significant  bias, both  proportional  and  constant.

We  move  on  to  test  our acceptance  criteria.

Remember  back  now our  threshold  is  1%  instead  of  0.5%

and  that's  working with  the  stakeholders  of  the  data

to  establish  what  is an  acceptable  equivalency.

That's  always  important  pre- work  to  do

and  we're  going to  test  that  equivalency.

Here  we  find  that  these  two  methods are  equivalent  within  plus  or  minus 1%.

On  the  unknown  samples and  that's  really  important.

We're  using  those  historical real- world  samples

to  really  ask  the  question  what  if we  went  back  in  time

and  reran  all  these  calibrations with  two  points

and  reported the  data  of  these  unknown  samples.

How  would  those  values  change?

On  average  we  see that  they  change  very  little,

and  so  it  gives  a  lot of  credence  to  considering

inducing  those  calibration  levels.

We've  essentially demonstrated  this  now

and  so  this  calibration  on  the  left and  the  calibration  on  the  right

we're  saying  are  equivalent aren't going  to  provide  equivalent  quantitation

within  1%  and  so  we  have  essentially  the evidence  we  need  to  push  for  this  change.

We  passed  our  first  check, we  reran  the  evaluation  with  the  two,

we  passed  that and  now  we're  at  our  final  step

of  implementing  those changes  in  our  process.

Now  it's  arguably  the  most important  part,

if  you  do  an  analysis,  we  just  leave  it sitting  there,  doesn't  do  much  good.

This  can  sometimes  be the  hardest  part.

You  have  to  go  out,  you  have  to  convince people,  especially  in  cases  like  this

and  you  have  to  take  consideration of  maybe  are  there  additional

things  that  this analysis  didn't  consider.

I'm happy  to  talk  to  anyone  about  that,

but  we're  not  going  to  go  in  depth of  what  the  other  considerations  we  have

to  think  about  before putting  this  into  action,

but  with  this  example,  we  did

actually  end  up  reducing  calibration levels  from  six  to  two

and  that  reduced  the  annual  cost of  running  that  method  by  about  $15,000.

From  there  we  might  say, okay,  what  now?

Are  we  done?

Of  course  not.

Right  now  we  need  to  look  at  we did  it  for  one  method,

we  have  a  suite  of  another  100  plus methods  that  may  also  have  these

many  level  calibrations  that  might be  overkill  for  what  we  need.

We  want  to  look  at  repeating the  analysis  for  other  methods.

That's  where  I  think automation  comes  in.

It  is  a  really  great  way  to  scale this  one- off  analyzes  for  ourselves,

but  also  for  others.

My  rule  of  thumb is  if  I  find  myself  doing  an  analysis

more  than  two  or  three  times.

Let's  build  that  out  in  the  automation,

say  future  me  a  lot of  time,  spend  a  little  time  now.

I'll  just  touch  on  this  very  briefly and  I  want  to  shout  out  Scott  here

for  helping  me  with  a  lot  of  the  workflow builder  work  and  the  scripting

but  these  native  automation  tools in  JMP  are  really  powerful

and  they're  very  user- friendly, there's  a  lot  of  code- free  options

and  so  there's  really  different ways  you  can  do  this.

You  can  do  it  on  the  left  side,  right  in a  classic  way  doing  all  the  scripting

even  allows you  to  save  these  global  variables

so  it  could  give  us  place for  you  to  have  users  enter  their

acceptance  criteria which  might  change

and  or  you  can  leverage  the  workflow builder  which  is  a  bit  of  a  newer  feature

but  really  lets  you  build out  this  automation.

Even  if  you  just  want  to  script  it  raw,

you  can  build the  framework  that  you  can  then  flesh  out.

The  two  things  I  will  say  about  this  is

how  much  you  can  automate  or  maybe how  much  effort  you  have  to  put  into  it

is  going  to  be  limited  to  some extent  by  how  rigid  that  workflow  is.

If  users  need  it  to  be  really  flexible, need  to  interact  with  it,

it  could  become very  challenging  to  automate,

and  of  course  the  data consistency  is  key  as  well.

This  is  really  a  great  tool to  help  others  reproduce  the  analysis,

but  you  really  do  have  to  also  train them  and  document  the  work,

make  sure  they  know what  it's  actually  doing.

As  we  all  know, every  analysis  has  its  caveats.

You  need  people  not  just to  click  and  have  a  report,

but  also  understand a  little  bit  like  what  are  some

potential  things  that  could  come  up, especially  if  you're  trying

to  future- proof of  work.

I  like  to   bring  it  back  together and  wrap  it  up  there

and  hope  today  that  I've  showed you  that  JMP

you  don't  have  to  do  like  crazy  complex or  sophisticated  things  in  JMP

you  could  piece  together a  lot  of  simple  functionality

to  create  really  impactful  workflows.

Whether  you're  working  in  a  lab at  your  organization,  wherever  it  is,

look  to  identify  these  improvements in  existing  workflows.

I  like  to  think  about if  you  all  are  in  the  experience

most  of  us  are  in,  there's  more  data than  what  we  know  what  to  do  with.

Look  at  the  data  that  no  one  is  looking  at

and  then  challenge the  conventional  thinking.

The  way  we're  working  is  always  changing, ask  why  do  we  do  it  this  way.

In  our  case,  for  a  long  time, this  is  the  way  we  do  it.

Five,  six- point  calibration.

Ask  why,  what  if  we  didn't, what  would  the  impact  be.

Of  course,  don't  have  to  tell anyone  listening  here.

Use  JMP  for  the  scalable  analysis and  then  use  automation  to  make  it  easy,

and  it  really  doesn't  have  to  be  fancy.

It  just  has  to  work for  what  you  need  it  to  do.

Finally,  you  can  use  that  to  impact  these impactful,  implement  impactful  change

and  use  data to  drive  those  decisions.

It's  probably  one  of  the  most  convincing tools  that  we  have  today.

If  you're  talking  to  management,

do  it  in  units  of  dollars because  they  love  that.

I'll  wrap  it  up  there

I  think  last  thing  I'd  like  to  say is  just  a  thank  you  to  the

JMP  Discovery  Summit  Committee,

all  the  people  organizing  special  thank you  to  Scott  for  all  the  help

he  gave  me  in  the  past  with  Amyris, but  also  with  this  talk  and  this  analysis,

and  then  a  number  of  people  at A myris who  were  involved in  with  this

and  with  that,  I  will  wrap  it  up.

Thank  you. Bye.