cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 
  • Register to attend Discovery Summit 2025 Online: Early Users Edition, Sept. 24-25.
  • New JMP features coming to desktops everywhere this September. Sign up to learn more at jmp.com/launch.
%3CLINGO-SUB%20id%3D%22lingo-sub-361517%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%3EWas%20ist%20eine%20Kovariate%20in%20der%20Versuchsplanung%3F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-361517%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%3E%3CP%3EW%C3%A4hrend%20meiner%20gesamten%20Zeit%20bei%3CA%20href%3D%22https%3A%2F%2Fwww.jmp.com%2Fen_us%2Fsoftware%2Fdata-analysis-software.html%3Futm_campaign%3Dtd7013Z000002sEGsQAM%26amp%3Butm_source%3Djmpblog%26amp%3Butm_medium%3Dsocial%22%20target%3D%22_blank%22%20rel%3D%22noopener%20noreferrer%22%3E%20JMP%3C%2FA%3E%20Ich%20hatte%20viele%20Designprobleme%2C%20die%20den%20Einsatz%20von%20Kovariaten%20erforderten%2C%20sowohl%20f%C3%BCr%20meine%20eigenen%20Probleme%20als%20auch%20um%20Kunden%20dabei%20zu%20helfen%2C%20eine%20L%C3%B6sung%20f%C3%BCr%20ihr%20Designproblem%20zu%20finden.%20Was%20mir%20aufgefallen%20ist%2C%20ist%2C%20dass%20viele%20Kunden%2C%20selbst%20sehr%20erfahrene%2C%20die%20Kovariaten-Option%20in%20der%20Custom%20Design-Plattform%20nicht%20kennen.%3C%2FP%3E%0A%3CP%3EZun%C3%A4chst%20m%C3%B6chte%20ich%20darauf%20hinweisen%2C%20dass%20es%20sich%20seit%20JMP%2010%20direkt%20im%20Dropdown-Men%C3%BC%20%E2%80%9EFaktor%20hinzuf%C3%BCgen%E2%80%9C%20in%20%E2%80%9EBenutzerdefiniertes%20Design%E2%80%9C%20befindet%20und%20Sie%20es%20bis%20jetzt%20vielleicht%20noch%20nicht%20einmal%20bemerkt%20haben%3A%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F30531i33533B00879C732C%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22cov_p1.png%22%20alt%3D%22cov_p1.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CH3%20id%3D%22toc-hId-1482272556%22%20id%3D%22toc-hId-1570153309%22%20id%3D%22toc-hId-1570153309%22%20id%3D%22toc-hId-1570153309%22%20id%3D%22toc-hId-1570153309%22%20id%3D%22toc-hId-1570153309%22%20id%3D%22toc-hId-1570153309%22%20id%3D%22toc-hId-1570153309%22%20id%3D%22toc-hId-1570153309%22%20id%3D%22toc-hId-1570153309%22%20id%3D%22toc-hId-1570153309%22%20id%3D%22toc-hId-1570153309%22%20id%3D%22toc-hId-1570153309%22%20id%3D%22toc-hId-1570153309%22%20id%3D%22toc-hId-1570153309%22%20id%3D%22toc-hId-1570153309%22%20id%3D%22toc-hId-1570153309%22%20id%3D%22toc-hId-1570153309%22%20id%3D%22toc-hId-1570153309%22%20id%3D%22toc-hId-1570153309%22%20id%3D%22toc-hId-1570153309%22%20id%3D%22toc-hId-1570153309%22%20id%3D%22toc-hId-1570153309%22%20id%3D%22toc-hId-1570153309%22%20id%3D%22toc-hId-1570153309%22%20id%3D%22toc-hId-1570153309%22%20id%3D%22toc-hId-1570153309%22%20id%3D%22toc-hId-1570153309%22%20id%3D%22toc-hId-1570153309%22%20id%3D%22toc-hId-1570153309%22%20id%3D%22toc-hId-1570153309%22%20id%3D%22toc-hId-1570153309%22%20id%3D%22toc-hId-1570153309%22%20id%3D%22toc-hId-1570153309%22%20id%3D%22toc-hId-1570153309%22%20id%3D%22toc-hId-1570153309%22%20id%3D%22toc-hId-1570153309%22%20id%3D%22toc-hId-1570153309%22%3EWas%20ist%20eine%20Kovariate%3F%3C%2FH3%3E%0A%3CP%3EEin%20Teil%20der%20Verwirrung%20ist%20auf%20die%20Verwendung%20des%20Begriffs%20%E2%80%9EKovariate%E2%80%9C%20zur%C3%BCckzuf%C3%BChren.%20In%20manchen%20Zusammenh%C3%A4ngen%20werden%20Sie%20sehen%2C%20dass%20es%20als%20Effekt%20verwendet%20wird%2C%20der%20kontrolliert%20werden%20soll%2C%20aber%20nicht%20von%20prim%C3%A4rem%20Interesse%20ist%20(ANCOVA)%2C%20und%20vielleicht%20wird%20es%20sogar%20lose%20f%C3%BCr%20jeden%20unabh%C3%A4ngigen%20Faktor%20bei%20der%20Definition%20eines%20Modells%20verwendet.%3C%2FP%3E%0A%3CP%3EIn%20einem%20geplanten%20Experiment%20ist%20eine%20Kovariate%20eine%20Eingabevariable%2C%20die%20wir%20in%20unserem%20Experiment%20ber%C3%BCcksichtigen%20m%C3%B6chten%2C%20aber%20wir%20k%C3%B6nnen%20sie%20nicht%20so%20steuern%2C%20dass%20sie%20einen%20beliebigen%20Wert%20annimmt%2C%20wie%20wir%20es%20f%C3%BCr%20andere%20Arten%20von%20Faktoren%20k%C3%B6nnen.%20Wenn%20wir%20jedoch%20die%20Werte%20solcher%20Eingaben%20im%20Voraus%20messen%20k%C3%B6nnen%2C%20k%C3%B6nnen%20wir%20sie%20bei%20der%20Gestaltung%20des%20Experiments%20ber%C3%BCcksichtigen.%3C%2FP%3E%0A%3CH3%20id%3D%22toc-hId--1069884405%22%20id%3D%22toc-hId--982003652%22%20id%3D%22toc-hId--982003652%22%20id%3D%22toc-hId--982003652%22%20id%3D%22toc-hId--982003652%22%20id%3D%22toc-hId--982003652%22%20id%3D%22toc-hId--982003652%22%20id%3D%22toc-hId--982003652%22%20id%3D%22toc-hId--982003652%22%20id%3D%22toc-hId--982003652%22%20id%3D%22toc-hId--982003652%22%20id%3D%22toc-hId--982003652%22%20id%3D%22toc-hId--982003652%22%20id%3D%22toc-hId--982003652%22%20id%3D%22toc-hId--982003652%22%20id%3D%22toc-hId--982003652%22%20id%3D%22toc-hId--982003652%22%20id%3D%22toc-hId--982003652%22%20id%3D%22toc-hId--982003652%22%20id%3D%22toc-hId--982003652%22%20id%3D%22toc-hId--982003652%22%20id%3D%22toc-hId--982003652%22%20id%3D%22toc-hId--982003652%22%20id%3D%22toc-hId--982003652%22%20id%3D%22toc-hId--982003652%22%20id%3D%22toc-hId--982003652%22%20id%3D%22toc-hId--982003652%22%20id%3D%22toc-hId--982003652%22%20id%3D%22toc-hId--982003652%22%20id%3D%22toc-hId--982003652%22%20id%3D%22toc-hId--982003652%22%20id%3D%22toc-hId--982003652%22%20id%3D%22toc-hId--982003652%22%20id%3D%22toc-hId--982003652%22%20id%3D%22toc-hId--982003652%22%20id%3D%22toc-hId--982003652%22%20id%3D%22toc-hId--982003652%22%20id%3D%22toc-hId--982003652%22%3EWann%20w%C3%BCrde%20ich%20eine%20Kovariate%20verwenden%3F%3C%2FH3%3E%0A%3CP%3EWenn%20Sie%20eine%20Kovariate%20unter%20dem%20Gesichtspunkt%20%E2%80%9Eunkontrolliert%2C%20aber%20im%20Voraus%20beobachtbar%E2%80%9C%20betrachten%2C%20fallen%20Ihnen%20einige%20unterschiedliche%20Anwendungsf%C3%A4lle%20auf.%20M%C3%B6glicherweise%20h%C3%B6ren%20Sie%20oft%20die%20Idee%20von%20a%3CEM%3E%20Kandidatensatz%3C%2FEM%3E%20.%20Im%20benutzerdefinierten%20Designer%20wird%20durch%20die%20Angabe%20der%20Kovariatenfaktoren%20ein%20%E2%80%9EKandidatensatz%E2%80%9C%20von%20L%C3%A4ufen%20erstellt%2C%20die%20der%20benutzerdefinierte%20Designer%20verwenden%20kann.%20Bei%20Custom%20Design%20wird%20der%20Kandidatensatz%20anhand%20einer%20Datentabelle%20angegeben.%20Sehr%20oft%20verf%C3%BCgen%20wir%20%C3%BCber%20zus%C3%A4tzliche%20steuerbare%20Faktoren%20(die%20jeden%20Wert%20im%20Bereich%20annehmen%20k%C3%B6nnen)%2C%20die%20wir%20dem%20benutzerdefinierten%20Designer%20nach%20eigenem%20Ermessen%20ausw%C3%A4hlen%20lassen%20k%C3%B6nnen%20(so%20wie%20wir%20normalerweise%20Faktoren%20definieren).%3C%2FP%3E%0A%3CP%3EIm%20Gro%C3%9Fen%20und%20Ganzen%20neige%20ich%20dazu%2C%20die%20Verwendung%20von%20Kovariaten%20in%20zwei%20F%C3%A4lle%20zu%20unterteilen%3A%3C%2FP%3E%0A%3CUL%3E%0A%3CLI%3EVerwendung%20einer%20Teilmenge%20der%20Zeilen.%3C%2FLI%3E%0A%3CLI%3EVerwendung%20aller%20Zeilen.%3C%2FLI%3E%0A%3C%2FUL%3E%0A%3CH3%20id%3D%22toc-hId-672925930%22%20id%3D%22toc-hId-760806683%22%20id%3D%22toc-hId-760806683%22%20id%3D%22toc-hId-760806683%22%20id%3D%22toc-hId-760806683%22%20id%3D%22toc-hId-760806683%22%20id%3D%22toc-hId-760806683%22%20id%3D%22toc-hId-760806683%22%20id%3D%22toc-hId-760806683%22%20id%3D%22toc-hId-760806683%22%20id%3D%22toc-hId-760806683%22%20id%3D%22toc-hId-760806683%22%20id%3D%22toc-hId-760806683%22%20id%3D%22toc-hId-760806683%22%20id%3D%22toc-hId-760806683%22%20id%3D%22toc-hId-760806683%22%20id%3D%22toc-hId-760806683%22%20id%3D%22toc-hId-760806683%22%20id%3D%22toc-hId-760806683%22%20id%3D%22toc-hId-760806683%22%20id%3D%22toc-hId-760806683%22%20id%3D%22toc-hId-760806683%22%20id%3D%22toc-hId-760806683%22%20id%3D%22toc-hId-760806683%22%20id%3D%22toc-hId-760806683%22%20id%3D%22toc-hId-760806683%22%20id%3D%22toc-hId-760806683%22%20id%3D%22toc-hId-760806683%22%20id%3D%22toc-hId-760806683%22%20id%3D%22toc-hId-760806683%22%20id%3D%22toc-hId-760806683%22%20id%3D%22toc-hId-760806683%22%20id%3D%22toc-hId-760806683%22%20id%3D%22toc-hId-760806683%22%20id%3D%22toc-hId-760806683%22%20id%3D%22toc-hId-760806683%22%20id%3D%22toc-hId-760806683%22%20id%3D%22toc-hId-760806683%22%3EVerwendung%20einer%20Teilmenge%20von%20Zeilen%3C%2FH3%3E%0A%3CP%3EWenn%20Sie%20den%20benutzerdefinierten%20Designer%20verwenden%2C%20um%20eine%20Teilmenge%20des%20Kovariatensatzes%20auszuw%C3%A4hlen%2C%20besteht%20die%20Idee%20darin%2C%20die%20Werte%20der%20Kovariaten%20zu%20verwenden%2C%20die%20wir%20im%20Voraus%20messen%20k%C3%B6nnen%2C%20um%20entsprechend%20dem%20experimentellen%20Ziel%20die%20besten%20L%C3%A4ufe%20aus%20dem%20Kandidatensatz%20auszuw%C3%A4hlen.%20Dies%20ist%20im%20Endeffekt%20viel%20effizienter%20als%20die%20einfache%20Entnahme%20einer%20Zufallsstichprobe.%3C%2FP%3E%0A%3CP%20data-unlink%3D%22true%22%3EAls%20hervorragendes%20Beispiel%20verweise%20ich%20gerne%20auf%20Kapitel%209%20von%3CA%20href%3D%22https%3A%2F%2Fwww.amazon.com%2FOptimal-Design-Experiments-Study-Approach%2Fdp%2F0470744618%22%20target%3D%22_blank%22%20rel%3D%22noopener%20nofollow%20noreferrer%22%3E%20Optimale%20Versuchsplanung%3A%20Ein%20Fallstudienansatz%3C%2FA%3E%20.%20Wenn%20Sie%20kein%20Exemplar%20des%20Buches%20haben%2C%20k%C3%B6nnen%20Sie%20einen%20%C3%9Cberblick%20%C3%BCber%20die%20Idee%20in%20einem%20fr%C3%BCheren%20Buch%20lesen%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2FJMP-Blog%2FNew-in-JMP-10-DOE-Simultaneous-addition-of-multiple-covariate%2Fba-p%2F30116%26nbsp%3B%22%20target%3D%22_blank%22%3E%20Blogbeitrag%20von%20Bradley%20Jones%3C%2FA%3E%20.%3C%2FP%3E%0A%3CP%3EEin%20weiterer%20h%C3%A4ufiger%20Anwendungsfall%20besteht%20darin%2C%20einen%20Kandidatensatz%20bereitzustellen%2C%20der%20dem%20Designraum%20eine%20gewisse%20Einschr%C3%A4nkung%20auferlegt.%20Dies%20kann%20zwar%20mit%20erfolgen%3CA%20href%3D%22https%3A%2F%2Fwww.jmp.com%2Fsupport%2Fhelp%2Fen%2F15.2%2Findex.shtml%23page%2Fjmp%2Fdefine-factor-constraints-3.shtml%23ww212375%2520%22%20target%3D%22_blank%22%20rel%3D%22noopener%20noreferrer%22%3E%20Faktoreinschr%C3%A4nkungen%20aus%20dem%20Custom%20Designer%3C%2FA%3E%20%2C%20ist%20der%20Kandidatensatz-Ansatz%20n%C3%BCtzlich%2C%20wenn%20die%20Region%20recht%20komplex%20ist%20oder%20wenn%20Sie%20m%C3%B6chten%2C%20dass%20die%20Durchl%C3%A4ufe%20eines%20Experiments%20eine%20bestimmte%20Struktur%20haben.%20Sie%20m%C3%B6chten%20beispielsweise%2C%20dass%20kontinuierliche%20Variablen%20nur%20f%C3%BCnf%20unterschiedliche%20Werte%20annehmen%20oder%20die%20Anzahl%20der%20Faktoren%20ungleich%20Null%20in%20einem%20bestimmten%20Versuchsdurchlauf%20beschr%C3%A4nken.%3C%2FP%3E%0A%3CH3%20id%3D%22toc-hId--1879231031%22%20id%3D%22toc-hId--1791350278%22%20id%3D%22toc-hId--1791350278%22%20id%3D%22toc-hId--1791350278%22%20id%3D%22toc-hId--1791350278%22%20id%3D%22toc-hId--1791350278%22%20id%3D%22toc-hId--1791350278%22%20id%3D%22toc-hId--1791350278%22%20id%3D%22toc-hId--1791350278%22%20id%3D%22toc-hId--1791350278%22%20id%3D%22toc-hId--1791350278%22%20id%3D%22toc-hId--1791350278%22%20id%3D%22toc-hId--1791350278%22%20id%3D%22toc-hId--1791350278%22%20id%3D%22toc-hId--1791350278%22%20id%3D%22toc-hId--1791350278%22%20id%3D%22toc-hId--1791350278%22%20id%3D%22toc-hId--1791350278%22%20id%3D%22toc-hId--1791350278%22%20id%3D%22toc-hId--1791350278%22%20id%3D%22toc-hId--1791350278%22%20id%3D%22toc-hId--1791350278%22%20id%3D%22toc-hId--1791350278%22%20id%3D%22toc-hId--1791350278%22%20id%3D%22toc-hId--1791350278%22%20id%3D%22toc-hId--1791350278%22%20id%3D%22toc-hId--1791350278%22%20id%3D%22toc-hId--1791350278%22%20id%3D%22toc-hId--1791350278%22%20id%3D%22toc-hId--1791350278%22%20id%3D%22toc-hId--1791350278%22%20id%3D%22toc-hId--1791350278%22%20id%3D%22toc-hId--1791350278%22%20id%3D%22toc-hId--1791350278%22%20id%3D%22toc-hId--1791350278%22%20id%3D%22toc-hId--1791350278%22%20id%3D%22toc-hId--1791350278%22%20id%3D%22toc-hId--1791350278%22%3EVerwendung%20aller%20Zeilen%3C%2FH3%3E%0A%3CP%3EWie%20im%20oben%20beschriebenen%20Teilmengenfall%20kann%20dies%20auftreten%2C%20wenn%20alle%20unsere%20Versuchseinheiten%20ausgew%C3%A4hlt%20sind%20und%20wir%20einige%20unkontrollierbare%20Werte%20messen%20k%C3%B6nnen%2C%20bevor%20wir%20das%20Experiment%20entwerfen.%3C%2FP%3E%0A%3CP%3EEin%20h%C3%A4ufiger%20Anwendungsfall%2C%20der%20m%C3%B6glicherweise%20weniger%20offensichtlich%20ist%2C%20besteht%20darin%2C%20eine%20gew%C3%BCnschte%20Struktur%20f%C3%BCr%20eine%20Teilmenge%20der%20Faktoren%20zu%20erzwingen.%3C%2FP%3E%0A%3CP%3EAngenommen%2C%20Sie%20entwerfen%20ein%20Experiment%20mit%2012%20Durchl%C3%A4ufen%20mit%20einem%20zweistufigen%20kategorialen%20Faktor%20X1%20mit%20den%20Ebenen%20A%20und%20B%20und%20vier%20kontinuierlichen%20Faktoren%20X2-X5%20mit%20einer%20zus%C3%A4tzlichen%20Einschr%C3%A4nkung%20f%C3%BCr%20den%20kategorialen%20Faktor%201%2F3%20der%20L%C3%A4ufe%20m%C3%BCssen%20auf%20Level%20A%20und%202%2F3%20auf%20Level%20B%20liegen.%3C%2FP%3E%0A%3CP%3EWir%20m%C3%BCssen%20lediglich%20eine%20Datentabelle%20f%C3%BCr%20den%20kategorialen%20Faktor%20mit%2012%20Durchl%C3%A4ufen%20und%20einer%20Spalte%20mit%20der%20Bezeichnung%20dieses%20Faktornamens%20erstellen.%20Tragen%20Sie%20vier%20Reihen%20als%20A%20und%20acht%20Reihen%20als%20B%20ein.%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22cov_p2.png%22%20style%3D%22width%3A%20183px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p2.png%22%20style%3D%22width%3A%20183px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p2.png%22%20style%3D%22width%3A%20183px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p2.png%22%20style%3D%22width%3A%20183px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p2.png%22%20style%3D%22width%3A%20183px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p2.png%22%20style%3D%22width%3A%20183px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p2.png%22%20style%3D%22width%3A%20183px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p2.png%22%20style%3D%22width%3A%20183px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p2.png%22%20style%3D%22width%3A%20183px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p2.png%22%20style%3D%22width%3A%20183px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p2.png%22%20style%3D%22width%3A%20183px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p2.png%22%20style%3D%22width%3A%20183px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p2.png%22%20style%3D%22width%3A%20183px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p2.png%22%20style%3D%22width%3A%20183px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p2.png%22%20style%3D%22width%3A%20183px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p2.png%22%20style%3D%22width%3A%20183px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p2.png%22%20style%3D%22width%3A%20183px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p2.png%22%20style%3D%22width%3A%20183px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p2.png%22%20style%3D%22width%3A%20183px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p2.png%22%20style%3D%22width%3A%20183px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p2.png%22%20style%3D%22width%3A%20183px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p2.png%22%20style%3D%22width%3A%20183px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p2.png%22%20style%3D%22width%3A%20183px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p2.png%22%20style%3D%22width%3A%20183px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p2.png%22%20style%3D%22width%3A%20183px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p2.png%22%20style%3D%22width%3A%20183px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p2.png%22%20style%3D%22width%3A%20183px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p2.png%22%20style%3D%22width%3A%20183px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p2.png%22%20style%3D%22width%3A%20183px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p2.png%22%20style%3D%22width%3A%20183px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p2.png%22%20style%3D%22width%3A%20183px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p2.png%22%20style%3D%22width%3A%20183px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p2.png%22%20style%3D%22width%3A%20183px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p2.png%22%20style%3D%22width%3A%20183px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p2.png%22%20style%3D%22width%3A%20183px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p2.png%22%20style%3D%22width%3A%20183px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p2.png%22%20style%3D%22width%3A%20183px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p2.png%22%20style%3D%22width%3A%20183px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F30532iDF86F17D0CD8BAB3%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22cov_p2.png%22%20alt%3D%22cov_p2.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3EW%C3%A4hlen%20Sie%20im%20benutzerdefinierten%20Design%20%E2%80%9EFaktor%20hinzuf%C3%BCgen%E2%80%9C%20%26gt%3B%20%E2%80%9EKovariate%E2%80%9C%20und%20f%C3%BCgen%20Sie%20dann%20die%20verbleibenden%20vier%20kontinuierlichen%20Faktoren%20hinzu.%20Wenn%20wir%20die%20Anzahl%20der%20Durchl%C3%A4ufe%20auf%2012%20belassen%2C%20bevor%20wir%20auf%20%E2%80%9EDesign%20erstellen%E2%80%9C%20klicken%2C%20wie%20folgt%3A%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22cov_p3.png%22%20style%3D%22width%3A%20341px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p3.png%22%20style%3D%22width%3A%20341px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p3.png%22%20style%3D%22width%3A%20341px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p3.png%22%20style%3D%22width%3A%20341px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p3.png%22%20style%3D%22width%3A%20341px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p3.png%22%20style%3D%22width%3A%20341px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p3.png%22%20style%3D%22width%3A%20341px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p3.png%22%20style%3D%22width%3A%20341px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p3.png%22%20style%3D%22width%3A%20341px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p3.png%22%20style%3D%22width%3A%20341px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p3.png%22%20style%3D%22width%3A%20341px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p3.png%22%20style%3D%22width%3A%20341px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p3.png%22%20style%3D%22width%3A%20341px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p3.png%22%20style%3D%22width%3A%20341px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p3.png%22%20style%3D%22width%3A%20341px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p3.png%22%20style%3D%22width%3A%20341px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p3.png%22%20style%3D%22width%3A%20341px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p3.png%22%20style%3D%22width%3A%20341px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p3.png%22%20style%3D%22width%3A%20341px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p3.png%22%20style%3D%22width%3A%20341px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p3.png%22%20style%3D%22width%3A%20341px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p3.png%22%20style%3D%22width%3A%20341px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p3.png%22%20style%3D%22width%3A%20341px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p3.png%22%20style%3D%22width%3A%20341px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p3.png%22%20style%3D%22width%3A%20341px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p3.png%22%20style%3D%22width%3A%20341px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p3.png%22%20style%3D%22width%3A%20341px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p3.png%22%20style%3D%22width%3A%20341px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p3.png%22%20style%3D%22width%3A%20341px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p3.png%22%20style%3D%22width%3A%20341px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p3.png%22%20style%3D%22width%3A%20341px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p3.png%22%20style%3D%22width%3A%20341px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p3.png%22%20style%3D%22width%3A%20341px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p3.png%22%20style%3D%22width%3A%20341px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p3.png%22%20style%3D%22width%3A%20341px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p3.png%22%20style%3D%22width%3A%20341px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p3.png%22%20style%3D%22width%3A%20341px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p3.png%22%20style%3D%22width%3A%20341px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F30535iD07ADD39523DB48F%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22cov_p3.png%22%20alt%3D%22cov_p3.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3EDer%20resultierende%20Entwurf%20erzwingt%20die%20Durchl%C3%A4ufe%20f%C3%BCr%3C%2FP%3E%0A%3CP%3EWeitere%20Beispiele%20f%C3%BCr%20die%20Verwendung%20dieser%20Idee%20aus%20fr%C3%BCheren%20Blogbeitr%C3%A4gen%20sind%20die%20Erstellung%20eines%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2FJMP-Blog%2FHow-to-create-an-experiment-design-that-is-robust-to-a-linear%2Fba-p%2F30138%22%20target%3D%22_blank%22%3E%20Experiment%20robust%20gegen%C3%BCber%20einem%20linearen%20Trend%20in%20der%20Reaktion%20%C3%BCber%20die%20Zeit%3C%2FA%3E%20oder%20Sicherstellung%20einer%20definitiven%20Screening-Designstruktur%20f%C3%BCr%20eine%20Teilmenge%20der%20Faktoren%2C%20wie%20z%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2FJMP-Blog%2FEggstra-Eggstra-A-new-designed-eggsperiment%2Fba-p%2F30700%22%20target%3D%22_blank%22%3E%20Experiment%20f%C3%BCr%20hartgekochte%20Eier%3C%2FA%3E%20.%3C%2FP%3E%0A%3CH3%20id%3D%22toc-hId--136420696%22%20id%3D%22toc-hId--48539943%22%20id%3D%22toc-hId--48539943%22%20id%3D%22toc-hId--48539943%22%20id%3D%22toc-hId--48539943%22%20id%3D%22toc-hId--48539943%22%20id%3D%22toc-hId--48539943%22%20id%3D%22toc-hId--48539943%22%20id%3D%22toc-hId--48539943%22%20id%3D%22toc-hId--48539943%22%20id%3D%22toc-hId--48539943%22%20id%3D%22toc-hId--48539943%22%20id%3D%22toc-hId--48539943%22%20id%3D%22toc-hId--48539943%22%20id%3D%22toc-hId--48539943%22%20id%3D%22toc-hId--48539943%22%20id%3D%22toc-hId--48539943%22%20id%3D%22toc-hId--48539943%22%20id%3D%22toc-hId--48539943%22%20id%3D%22toc-hId--48539943%22%20id%3D%22toc-hId--48539943%22%20id%3D%22toc-hId--48539943%22%20id%3D%22toc-hId--48539943%22%20id%3D%22toc-hId--48539943%22%20id%3D%22toc-hId--48539943%22%20id%3D%22toc-hId--48539943%22%20id%3D%22toc-hId--48539943%22%20id%3D%22toc-hId--48539943%22%20id%3D%22toc-hId--48539943%22%20id%3D%22toc-hId--48539943%22%20id%3D%22toc-hId--48539943%22%20id%3D%22toc-hId--48539943%22%20id%3D%22toc-hId--48539943%22%20id%3D%22toc-hId--48539943%22%20id%3D%22toc-hId--48539943%22%20id%3D%22toc-hId--48539943%22%20id%3D%22toc-hId--48539943%22%20id%3D%22toc-hId--48539943%22%3EIrgendetwas%20anderes%3F%3C%2FH3%3E%0A%3CP%3EWir%20haben%20einige%20Verbesserungen%20an%20der%20Kovariatenverarbeitung%20vorgenommen%3CA%20href%3D%22https%3A%2F%2Fwww.jmp.com%2Fen_us%2Fsoftware%2Fnew-release%2Fnew-in-jmp.html%3Futm_campaign%3Dtd7013Z000002sEGsQAM%26amp%3Butm_source%3Djmpblog%26amp%3Butm_medium%3Dsocial%22%20target%3D%22_blank%22%20rel%3D%22noopener%20noreferrer%22%3E%20JMP%2016%3C%2FA%3E%20.%20Ich%20habe%20diese%20neuen%20St%C3%BCcke%20in%20hervorgehoben%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2FJMPer-Cable%2FNew-in-JMP-16-Improved-covariate-handling-in-DOE%2Fba-p%2F361540%22%20target%3D%22_blank%22%3E%20ein%20weiterer%20Beitrag%3C%2FA%3E%20.%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-TEASER%20id%3D%22lingo-teaser-361517%22%20slang%3D%22en-US%22%3E%3CP%3EEin%20Teil%20der%20Verwirrung%20ist%20auf%20die%20Verwendung%20des%20Begriffs%20%E2%80%9EKovariate%E2%80%9C%20zur%C3%BCckzuf%C3%BChren.%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-center%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22cov_p1.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F30531i33533B00879C732C%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22cov_p1.png%22%20alt%3D%22cov_p1.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%3C%2FLINGO-TEASER%3E%3CLINGO-SUB%20id%3D%22lingo-sub-685698%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%3EBetreff%3A%20Was%20ist%20eine%20Kovariate%20in%20der%20Versuchsplanung%3F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-685698%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%3E%3CP%3E%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F1970%22%20target%3D%22_blank%22%3E%40Ryan_Lekivetz%3C%2FA%3E%20%2C%20Welche%20Optimalit%C3%A4tskriterien%20nutzt%20die%20Kandidatenmenge%20f%C3%BCr%20ihre%20Auswahl%3FBasiert%20dies%20auf%20dem%20zugrunde%20liegenden%20DOE%3F%26nbsp%3B%20%26nbsp%3B%26nbsp%3B%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-376692%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%3EBetreff%3A%20Was%20ist%20eine%20Kovariate%20in%20der%20Versuchsplanung%3F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-376692%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%3E%3CP%3EN%C3%BCtzlicher%20w%C3%A4ren%20Beispiele%20f%C3%BCr%20Faktoren%2C%20die%20wir%20nicht%20einfach%20kontrollieren%20k%C3%B6nnen%2C%20wie%20etwa%20relative%20Luftfeuchtigkeit%2C%20Tageszeit%20usw.%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-364329%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%3EBetreff%3A%20Was%20ist%20eine%20Kovariate%20in%20der%20Versuchsplanung%3F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-364329%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%3E%3CP%3E%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F1970%22%20target%3D%22_blank%22%3E%40Ryan_Lekivetz%3C%2FA%3E%20Ich%20freue%20mich%20darauf%2C%20mehr%20zu%20sehen.%20Die%20Rolle%20der%20Kovariaten%20scheint%20wirklich%20n%C3%BCtzlich%20zu%20sein.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-363206%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%3EBetreff%3A%20Was%20ist%20eine%20Kovariate%20in%20der%20Versuchsplanung%3F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-363206%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%3E%3CP%3E%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F4386%22%20target%3D%22_blank%22%3E%40Byron_JMP%3C%2FA%3E%20Tolle%20Frage!%20Ich%20werde%20im%20n%C3%A4chsten%20Beitrag%20weitere%20Details%2FBeispiele%20vorstellen%2C%20aber%20wenn%20Sie%20beim%20Laden%20Zeilen%20in%20der%20Datentabelle%20ausgew%C3%A4hlt%20haben%2C%20werden%20diese%20Zeilen%20erzwungen%2C%20auch%20wenn%20sie%20keine%20optimale%20Wahl%20sind.%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-363144%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%3EBetreff%3A%20Was%20ist%20eine%20Kovariate%20in%20der%20Versuchsplanung%3F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-363144%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%3E%3CP%3EWas%20bewirkt%20%E2%80%9EVerwendung%20ausgew%C3%A4hlter%20Kovariatenzeilen%20erzwingen%E2%80%9C%20mit%20dem%20Design%3F%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-686954%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%3EBetreff%3A%20Was%20ist%20eine%20Kovariate%20in%20der%20Versuchsplanung%3F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-686954%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%3E%3CP%3E%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F1670%22%20target%3D%22_blank%22%3E%40Peter_Hersh%3C%2FA%3E%20%E2%80%93%20Richtig%2C%20ab%20JMP%2016%20werden%20die%20Optimalit%C3%A4tskriterien%20verwendet%2C%20die%20in%20der%20Custom%20Design-Spezifikation%20definiert%20sind.%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-686977%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%3EBetreff%3A%20Was%20ist%20eine%20Kovariate%20in%20der%20Versuchsplanung%3F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-686977%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%3E%3CP%3EDanke%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F1970%22%20target%3D%22_blank%22%3E%20%40Ryan_Lekivetz%3C%2FA%3E%20Mir%20gef%C3%A4llt%20die%20Idee%2C%20Kovariaten%20zu%20verwenden%2C%20um%20Struktur%2FEinschr%C3%A4nkungen%20f%C3%BCr%20das%20Design%20zu%20erzwingen%2C%20sehr%20gut%20%E2%80%93%20so%20hatte%20ich%20vorher%20noch%20nicht%20dar%C3%BCber%20nachgedacht.%20Eine%20weitere%20m%C3%B6gliche%20Verwendung%20f%C3%BCr%20Kovariatenfaktoren%20ist%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2FJMP-Blog%2FUsing-functional-data-as-inputs-instead-of-outputs%2Fba-p%2F675530%22%20target%3D%22_self%22%3E%20Verwenden%20Sie%20gekr%C3%BCmmte%20Daten%20als%20Eingaben%20f%C3%BCr%20ein%20Experiment%3C%2FA%3E%20anstelle%20der%20herk%C3%B6mmlichen%20Verwendung%20von%20Kurven%20als%20Ausgaben.%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-689056%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%3EBetreff%3A%20Was%20ist%20eine%20Kovariate%20in%20der%20Versuchsplanung%3F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-689056%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%3E%3CP%3E%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F1970%22%20target%3D%22_blank%22%3E%40Ryan_Lekivetz%3C%2FA%3E%20Danke%2C%20gibt%20es%20eine%20M%C3%B6glichkeit%2C%20das%20MaxPro-Kriterium%20in%20raumf%C3%BCllenden%20FFF-Designs%20f%C3%BCr%20die%20Kandidatenauswahl%20anzuwenden%3FWelche%20Kriterien%20werden%20verwendet%2C%20wenn%20Sie%20das%20Design%20erweitern%3FEs%20handelt%20sich%20eher%20um%20einen%20Nischenanwendungsfall%2C%20bei%20dem%20es%20darum%20geht%2C%20ein%20raumf%C3%BCllendes%20Design%20zu%20erstellen%20und%20dann%20zu%20erweitern%2C%20um%20Ecken%20und%20axiale%20Punkte%20zu%20erfassen%20und%20das%20MaxPro-Kriterium%20zu%20verwenden%2C%20um%20einen%20Kandidatensatz%20auszuw%C3%A4hlen.%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-703816%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%3EBetreff%3A%20Was%20ist%20eine%20Kovariate%20in%20der%20Versuchsplanung%3F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-703816%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%3E%3CP%3E%3CSPAN%3EDanke%3C%2FSPAN%3E%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F1970%22%20target%3D%22_blank%22%3E%20%40Ryan_Lekivetz%3C%2FA%3E%20f%C3%BCr%20die%20Erkl%C3%A4rung.%20Wir%20betreiben%20eine%20Montagemaschine%20mit%20Klebstoffen%20und%20kontrollieren%20die%20Maschineneinstellungen%20in%20einem%20DOE.%20Die%20Kovariate%20ist%20in%20diesem%20Fall%20das%20Klebstoffgewicht%2C%20das%20von%20der%20Maschine%20aufgetragen%20wird%2C%20da%20es%20sich%20von%20Durchlauf%20zu%20Durchlauf%20kontinuierlich%20%C3%A4ndert.%20Wir%20haben%20keine%20M%C3%B6glichkeit%2C%20das%20Gewicht%20genau%20zu%20kontrollieren%2C%20sondern%20nur%20eine%20ungef%C3%A4hre%20Dosiskontrolle.%3C%2FP%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3CP%3EDie%20Frage%3A%20K%C3%B6nnen%20wir%20das%20gemessene%20Gewicht%20als%20Kovariate%20hinzuf%C3%BCgen%3F%20Diese%20Informationen%20erhalten%20wir%2C%20wenn%20wir%20den%20DOE-Lauf%20durchf%C3%BChren.%20Wie%20sieht%20das%20in%20JMP%2017%20aus%3F%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-704021%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%3EBetreff%3A%20Was%20ist%20eine%20Kovariate%20in%20der%20Versuchsplanung%3F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-704021%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%3E%3CP%3EHallo%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F23094%22%20target%3D%22_blank%22%3E%20%40MichaelR1%3C%2FA%3E%20.%20Wenn%20ich%20Sie%20richtig%20verstehe%2C%20w%C3%BCrde%20das%20gemessene%20Gewicht%20als%20%E2%80%9Eunkontrollierter%E2%80%9C%20Faktor%20betrachtet%2C%20den%20Sie%20im%20selben%20Men%C3%BC%20ausw%C3%A4hlen%20w%C3%BCrden%20(erster%20Screenshot%20auf%20dieser%20Seite).%26nbsp%3B%26nbsp%3B%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-706291%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%3EBetreff%3A%20Was%20ist%20eine%20Kovariate%20in%20der%20Versuchsplanung%3F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-706291%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%3E%3CP%3E%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F610%22%20target%3D%22_blank%22%3E%40Jed_Campbell%3C%2FA%3E%20das%20ist%20richtig.%20Wir%20versuchen%2C%20es%20durch%20Maschineneinstellungen%20zu%20kontrollieren%2C%20aber%20es%20k%C3%B6nnte%20als%20unkontrollierter%20Faktor%20angesehen%20werden.%20Mir%20war%20nicht%20bewusst%2C%20dass%20man%20dem%20Design%20einen%20unkontrollierten%20Faktor%20hinzuf%C3%BCgen%20k%C3%B6nnte.%20Wie%20funktioniert%20das%3F%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-706500%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%3EBetreff%3A%20Was%20ist%20eine%20Kovariate%20in%20der%20Versuchsplanung%3F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-706500%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%3E%3CP%3E%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F23094%22%20target%3D%22_blank%22%3E%40MichaelR1%3C%2FA%3E%20Angenommen%2C%20Sie%20verwenden%20den%20benutzerdefinierten%20Designer%2C%20w%C3%A4hlen%20Sie%20im%20Dropdown-Men%C3%BC%20%E2%80%9EFaktor%20hinzuf%C3%BCgen%E2%80%9C%20die%20Option%20%E2%80%9EUnkontrolliert%E2%80%9C%20aus.%20Notieren%20Sie%20w%C3%A4hrend%20des%20Experiments%20das%20Gewicht%20f%C3%BCr%20jeden%20Lauf%2C%20und%20das%20Modell%20wird%20es%20ber%C3%BCcksichtigen.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Jed_Campbell_0-1701881919003.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1701881919003.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1701881919003.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1701881919003.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1701881919003.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1701881919003.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Jed_Campbell_0-1701881919003.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F59388iD3988E771EC799F6%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22Jed_Campbell_0-1701881919003.png%22%20alt%3D%22Jed_Campbell_0-1701881919003.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-706503%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%3EBetreff%3A%20Was%20ist%20eine%20Kovariate%20in%20der%20Versuchsplanung%3F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-706503%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%3E%3CP%3E%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F23094%22%20target%3D%22_blank%22%3E%40MichaelR1%3C%2FA%3E%20Erl%C3%A4uterungen%20zu%20den%20verschiedenen%20Faktortypen%20und%20ihrer%20Verwendung%20finden%20Sie%20im%20JMP-Hilfebereich%3A%3CA%20href%3D%22https%3A%2F%2Fwww.jmp.com%2Fsupport%2Fhelp%2Fen%2F17.2%2Findex.shtml%23page%2Fjmp%2Ffactors.shtml%22%20target%3D%22_blank%22%20rel%3D%22noopener%20noreferrer%22%3E%20Faktoren%20(jmp.com)%3C%2FA%3E%3C%2FP%3E%3C%2FLINGO-BODY%3E
Choose Language Hide Translation Bar
What is a covariate in design of experiments?

Throughout my time at JMP, I have had many design problems that needed the use of covariates, both for my own problems and to help customers find a solution to their design problem. What I have noticed is that many customers, even very experienced ones, are not aware of the covariate option in the Custom Design platform.

To start off, I want to point out it has lived right in the Add Factor dropdown in Custom Design since JMP 10, and you may not have even noticed until now:

cov_p1.png

What is a covariate?

Part of the confusion stems from the use of the term covariate. In some contexts, you will see it used as an effect to control for, but not of primary interest (ANCOVA), and you may even see it loosely used for any independent factor in defining a model.

In a designed experiment, a covariate is an input variable that we want to account for in our experiment but we cannot control it to be any value in the way we can for other types of factors. However, if we can measure the values of such inputs ahead of time, we can account for them when designing the experiment.

When would I use a covariate?

If you think of a covariate from the standpoint of “uncontrolled, but observable ahead of time,” there are a few different use cases that come up. You may often hear the idea of a candidate set. In the Custom Designer, specifying the covariate factors produces a “candidate set” of runs for the Custom Designer to use. In Custom Design, the candidate set is specified from a data table. Very often, we have additional controllable factors (that can take on any value in the range), that we can allow the Custom Designer to pick as it sees fit (the way we usually define factors).

Broadly speaking, I tend to break the use of covariates into two cases:

  • Using a subset of the rows.
  • Using all the rows.

Using a subset of rows

When using the Custom Designer to select a subset of the covariates set, the idea is to use the values of the covariates that we can measure ahead of time to pick the best runs from the candidate set according to the experimental goal. This ends up being much more efficient than simply taking a random sample.

For an excellent example, I like to point people to Chapter 9 of Optimal Design of Experiments: A Case Study Approach. If you do not have a copy of the book, you can read an outline of the idea in an earlier blog post from Bradley Jones.

Another common use case is to provide a candidate set that enforces some constraint on the design space. While this can be done using factor constraints from the Custom Designer, the candidate set approach is useful when the region is quite complex, or if you want the runs of an experiment to have a certain structure. For example, you might want continuous variables to take on only five distinct values or restrict the number of non-zero factors in any given experimental run.

Using all the rows

Like the subset case described above, this can occur when all our experimental units are chosen, and we can measure some uncontrollable values before designing the experiment.

A common use case that may be less obvious is to force a desired structure for a subset of the factors.

For instance, say if you were designing a 12-run experiment with one two-level categorical factor, X1 with levels A and B, and four continuous factors, X2-X5, with an added restriction that for the categorical factor, 1/3 of the runs need to be at level A and 2/3 at level B.

All we need to do is create a data table for the categorical factor with 12 runs, and a column labeled with that factor name. Put four rows as A, and eight rows as B.

cov_p2.png

In Custom Design, choose Add Factor->Covariate, and then add the remaining four continuous factors. If we keep the number of runs at 12 before clicking Make Design, like this,

cov_p3.png

the resulting design will force the runs for X1 as specified by the candidate set (with the desired ratio) and design for the optimal settings for the continuous factors.

Other examples using this idea from previous blog posts include the creation of an experiment robust to a linear trend in the response over time or ensuring a definitive screening design structure for a subset of the factors, such as an experiment for hard-boiled eggs.

Anything else?

We have made some improvements to covariate handling in JMP 16. I've highlighted those new pieces in another post.

Last Modified: Feb 26, 2021 3:19 PM
Comments