キャンセル
次の結果を表示 
表示  限定  | 次の代わりに検索 
もしかして: 

JMP Blog

A blog for anyone curious about data visualization, design of experiments, statistics, predictive modeling, and more
%3CLINGO-SUB%20id%3D%22lingo-sub-625330%22%20slang%3D%22zh-TW%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%3EAnwendungsfall%3A%20Ermittlung%20von%20Einflussfaktoren%20bei%20Patienten%20mit%20Helicobacter-pylori-Infektion%20basierend%20auf%20JMP-Datenexploration%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-625330%22%20slang%3D%22zh-TW%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%3E%3CP%3EDie%20Infektion%20mit%20Helicobacter%20pylori%20(im%20Folgenden%20als%20Hp%20bezeichnet)%20ist%20zu%20einem%20internationalen%20Problem%20geworden.%20Die%20Hp-Infektionsrate%20in%20China%20liegt%20bei%20etwa%2050%20bis%2090%20%25%20und%20liegt%20damit%20%C3%BCber%20dem%20Durchschnitt%20der%20entwickelten%20L%C3%A4nder%20(50%20bis%2070%20%25).%20Die%20Infektion%20mit%20Helicobacter%20pylori%20ist%20in%20meinem%20Land%20zu%20einer%20Krise%20der%20%C3%B6ffentlichen%20Gesundheit%20geworden.%20Derzeit%20besteht%20in%20China%20kein%20Konsens%20%C3%BCber%20die%20Infektionswege%20und%20riskanten%20Verhaltensweisen%20von%20H.%20pylori.%20Wie%20man%20die%20Einflussfaktoren%20der%20Krankheit%20effektiv%20herausfinden%20kann%2C%20ist%20ebenfalls%20ein%20Thema%2C%20das%20in%20der%20Forschung%20diskussionsw%C3%BCrdig%20ist.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EDie%20heutige%20KI-Technologie%20f%C3%BCr%20k%C3%BCnstliche%20Intelligenz%20und%20die%20Big-Data-Analyse%20k%C3%B6nnen%20eine%20wichtige%20Rolle%20in%20der%20Forschung%20und%20Hilfsanalyse%20spielen.%20In%20dieser%20Studie%20der%20leitende%20Apotheker%20des%20Krankenhauses%20f%C3%BCr%20Traditionelle%20Chinesische%20Medizin%20der%20Stadt%20Zhongshan%2C%20Provinz%20Guangdong%3CEM%3E%20Yuan%20Yiming%2C%3C%2FEM%3E%20Er%20teilt%20mit%2C%20wie%20er%20Daten%20verwendet%2C%20um%20die%20lineare%20Beziehung%20zwischen%20relativen%20Merkmalsdaten%20und%20Ergebnissen%20zu%20untersuchen%2C%20wobei%20er%20die%20Visualisierung%20und%20Interpretierbarkeit%20des%20maschinellen%20Lernens%20vollst%C3%A4ndig%20anwendet%2C%20mit%20dem%20Ziel%2C%20die%20Infektionsmuster%20und%20gef%C3%A4hrlichen%20Verhaltensweisen%20von%20HP%20in%20China%20zu%20verstehen%20und%20eine%20benutzerfreundliche%20L%C3%B6sung%20zu%20etablieren%20wirtschaftlich%20Das%20pr%C3%A4diktive%20Infektionsmodell%20bietet%20eine%20Referenz%20f%C3%BCr%20asymptomatische%20Infektionen.%3C%2FP%3E%0A%3CP%3E%3CSTRONG%3E%26nbsp%3B%3C%2FSTRONG%3E%3C%2FP%3E%0A%3CP%3EAls%20Forschungssubjekte%20wurden%20in%20dieser%20Studie%20gesunde%20Menschen%20ausgew%C3%A4hlt%2C%20die%20sich%20im%20Endoskopie-%20und%20Untersuchungszentrum%20Kohlenstoff-13-%20und%20Kohlenstoff-14-Atemtests%20oder%20einem%20gastroskopischen%20Schleimhauttest%20zum%20Nachweis%20von%20Helicobacter%20pylori%20unterzogen%20hatten.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EDie%20Forscher%20entwarfen%20auf%20der%20Grundlage%20von%20Experten-%20und%20Literaturdaten%20einen%20nicht%20skalierten%20elektronischen%20Fragebogen%2C%20der%20aus%20zwei%20und%20mehreren%20Kategorien%20im%20Zusammenhang%20mit%20einer%20Helicobacter-pylori-Infektion%20bestand.%20Das%20Fragebogenformular%20ist%20in%20drei%20Dimensionen%20und%2063%20Variablen%20unterteilt%3A%20%E2%91%A0%20Formular%20mit%20grundlegenden%20Patienteninformationen%2C%20%E2%91%A1%20Formular%20mit%20klinischen%20Manifestationen%20und%20%E2%91%A2%20Formular%20mit%20Lebens-%20und%20Essgewohnheiten.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EDer%20Forscher%20nutzte%20JMP%20Pro%2C%20um%20eine%20statistische%20Analyse%20der%20Daten%20durchzuf%C3%BChren.%20Zuerst%20wurde%20eine%20Einzelfaktoranalyse%20der%20Daten%20durchgef%C3%BChrt%2C%20dann%20wurde%20eine%20multiple%20logistische%20Regressionsanalyse%20durchgef%C3%BChrt%2C%20um%20ein%20Vorhersagemodell%20zu%20erstellen.%20Schlie%C3%9Flich%20wurde%20ein%20Walddiagramm%20basierend%20auf%20den%20Ergebnissen%20der%20Modelleffektterme%20gezeichnet.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CH3%20id%3D%22toc-hId-1564583222%22%20id%3D%22toc-hId-1564583256%22%20id%3D%22toc-hId-1564583256%22%20id%3D%22toc-hId-1564583256%22%20id%3D%22toc-hId-1564583256%22%3E%3CSTRONG%3EHauptanalyseideen%20und%20-schritte%3C%2FSTRONG%3E%3C%2FH3%3E%0A%3CH4%20id%3D%22toc-hId--1184087244%22%20id%3D%22toc-hId--1184087210%22%20id%3D%22toc-hId--1184087210%22%20id%3D%22toc-hId--1184087210%22%20id%3D%22toc-hId--1184087210%22%3E%3CSTRONG%3ESchritt%201%3A%20Bereinigen%20Sie%20die%20vorhandenen%20Daten%3C%2FSTRONG%3E%3C%2FH4%3E%0A%3CP%3EMit%20JMP%20k%C3%B6nnen%20Batch-Variablen%20klassifiziert%20und%20verwaltet%20werden.%20Da%20es%20sich%20bei%20den%20gesammelten%20Variablen%20um%20qualitative%20Variablen%20handelt%2C%20werden%20in%20JMP%20Pro%20standardisierte%20Spaltenfunktionsoperationen%20f%C3%BCr%20alle%20Variablen%20ausgef%C3%BChrt%20und%20alle%20Variablen%20werden%20einheitlich%20in%20Charakternamenvariablen%20umgewandelt.%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_13-1682319201572.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_13-1682319201572.png%22%20style%3D%22width%3A%20250px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_13-1682319201572.png%22%20style%3D%22width%3A%20250px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_13-1682319201572.png%22%20style%3D%22width%3A%20250px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_13-1682319201572.png%22%20style%3D%22width%3A%20250px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F52261i53AD9BE18D4B6246%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_13-1682319201572.png%22%20alt%3D%22Michelle_Wu_13-1682319201572.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_14-1682319221226.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_14-1682319221226.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_14-1682319221226.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_14-1682319221226.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_14-1682319221226.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F52262i982B08E8B9F1DDDF%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_14-1682319221226.png%22%20alt%3D%22Michelle_Wu_14-1682319221226.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CH4%20id%3D%22toc-hId-558723091%22%20id%3D%22toc-hId-558723125%22%20id%3D%22toc-hId-558723125%22%20id%3D%22toc-hId-558723125%22%20id%3D%22toc-hId-558723125%22%3E%3CSTRONG%3ESchritt%202%3A%20Validierungsspalten%20generieren%3C%2FSTRONG%3E%3C%2FH4%3E%0A%3CP%3EDie%20Verifizierungsfunktion%20von%20JMP%20kann%20verwendet%20werden%2C%20um%20die%20Daten%20in%20Trainingssatz%20und%20Verifizierungssatz%20zu%20klassifizieren.%20Die%20Trainingsgruppe%20und%20die%20Validierungsgruppe%20werden%20gem%C3%A4%C3%9F%207%2C5%3A2%2C5%20zuf%C3%A4llig%20ausgew%C3%A4hlt%2C%20wie%20unten%20gezeigt%3A%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_15-1682319265965.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_15-1682319265965.png%22%20style%3D%22width%3A%20298px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_15-1682319265965.png%22%20style%3D%22width%3A%20298px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_15-1682319265965.png%22%20style%3D%22width%3A%20298px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_15-1682319265965.png%22%20style%3D%22width%3A%20298px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F52263i9E904ACE88A3EC38%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_15-1682319265965.png%22%20alt%3D%22Michelle_Wu_15-1682319265965.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CH4%20id%3D%22toc-hId--1993433870%22%20id%3D%22toc-hId--1993433836%22%20id%3D%22toc-hId--1993433836%22%20id%3D%22toc-hId--1993433836%22%20id%3D%22toc-hId--1993433836%22%3E%3CSTRONG%3ESchritt%203%3A%20Einzelfaktoranalyse%3C%2FSTRONG%3E%3C%2FH4%3E%0A%3CP%3EDurch%20Notfallanalysen%20und%20die%20Vertriebsplattform%20kann%20festgestellt%20werden%2C%20dass%20Menschen%20in%20Etagen%20leben%2C%20Magenschmerzen%2C%20sauren%20Reflux%2C%20Bl%C3%A4hungen%2C%20Appetitlosigkeit%2C%20Mundgeruch%2C%20bitteren%20Mund%2C%20Magenknurren%2C%20Hunger%2C%20An%C3%A4mie%2C%20zu%20Hause%20kochendes%20Mittagessen%20und%20Rauch%20haben%20%2C%20und%20beim%20Ausgehen%20%C3%B6ffentliche%20Verkehrsmittel%20nutzen.%20Mit%20Ausnahme%20von%20Essst%C3%A4bchen%2C%20der%20Gewohnheit%2C%20Servierst%C3%A4bchen%20zu%20verwenden%20und%20ob%20Familienmitglieder%20und%20Freunde%20infiziert%20sind%2C%20gibt%20es%20f%C3%BCr%20andere%20Variablen%20keine%20statistische%20Signifikanz.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_16-1682319298783.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_16-1682319298783.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_16-1682319298783.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_16-1682319298783.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_16-1682319298783.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F52264iD37C8E81843E2661%2Fimage-size%2Flarge%3Fv%3Dv2%26amp%3Bpx%3D999%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_16-1682319298783.png%22%20alt%3D%22Michelle_Wu_16-1682319298783.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_17-1682319350708.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_17-1682319350708.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_17-1682319350708.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_17-1682319350708.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_17-1682319350708.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F52265iF049C420A6A36470%2Fimage-size%2Flarge%3Fv%3Dv2%26amp%3Bpx%3D999%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_17-1682319350708.png%22%20alt%3D%22Michelle_Wu_17-1682319350708.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CH4%20id%3D%22toc-hId--250623535%22%20id%3D%22toc-hId--250623501%22%20id%3D%22toc-hId--250623501%22%20id%3D%22toc-hId--250623501%22%20id%3D%22toc-hId--250623501%22%3E%3CSTRONG%3ESchritt%204%3A%20Multi-Faktor-Analyse%3C%2FSTRONG%3E%3C%2FH4%3E%0A%3CP%3EKlicken%20Sie%20in%20JMP%20auf%20das%20Men%C3%BC%20%E2%80%9EAnalyse%E2%80%9C%20%E2%86%92%20%E2%80%9E%3CSTRONG%3E%20Passendes%20Modell%3C%2FSTRONG%3E%3CSTRONG%3E%20(Modell%20anpassen)%3C%2FSTRONG%3E%20%E2%80%9D%20(Abbildung%202)%2C%20importieren%20Sie%20im%20Popup-Dialogfeld%20in%20%E2%80%9EY%E2%80%9C%2C%20ob%20Sie%20mit%20Helicobacter%20pylori%20infiziert%20sind%2C%20und%20importieren%20Sie%20die%20zu%20analysierenden%20unabh%C3%A4ngigen%20Variablen%20in%20das%20Feld%20%E2%80%9EKonstruierter%20Modelleffekt%E2%80%9C.%20%C3%9Cberpr%C3%BCfen%20Sie%20anhand%20der%20generierten%20Best%C3%A4tigungsspalte.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_18-1682319358370.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_18-1682319358370.png%22%20style%3D%22width%3A%20710px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_18-1682319358370.png%22%20style%3D%22width%3A%20710px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_18-1682319358370.png%22%20style%3D%22width%3A%20710px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_18-1682319358370.png%22%20style%3D%22width%3A%20710px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F52266i021D50C5E6708128%2Fimage-size%2Flarge%3Fv%3Dv2%26amp%3Bpx%3D999%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_18-1682319358370.png%22%20alt%3D%22Michelle_Wu_18-1682319358370.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EAus%20dem%20in%20der%20folgenden%20Abbildung%20gezeigten%20Effekt-Likelihood-Ratio-Test%20k%C3%B6nnen%20wir%20erkennen%2C%20dass%20die%20Wahrscheinlichkeit%20von%20Mundgeruch%2C%20Mundgeruch%2C%20die%20Verwendung%20%C3%B6ffentlicher%20Essst%C3%A4bchen%2C%20das%20Kochen%20des%20Mittagessens%20zu%20Hause%2C%20die%20Gewohnheit%2C%20%C3%B6ffentliche%20Essst%C3%A4bchen%20zu%20verwenden%2C%20An%C3%A4mie%20und%20die%20Anzahl%20der%20Stockwerke%20der%20Familie%20sind%20lebt%20in%20ist%20%26gt%3B%20Chi-Quadrat%2C%20was%20eine%20statistisch%20signifikante%20Signifikanz%20darstellt.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_19-1682319365770.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_19-1682319365770.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_19-1682319365770.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_19-1682319365770.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_19-1682319365770.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F52267i2EEF8569B0F197F4%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_19-1682319365770.png%22%20alt%3D%22Michelle_Wu_19-1682319365770.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%3CSTRONG%3E%26nbsp%3B%3C%2FSTRONG%3E%3C%2FP%3E%0A%3CH4%20id%3D%22toc-hId-1492186800%22%20id%3D%22toc-hId-1492186834%22%20id%3D%22toc-hId-1492186834%22%20id%3D%22toc-hId-1492186834%22%20id%3D%22toc-hId-1492186834%22%3E%3CSTRONG%3EAnhand%20der%20Ergebnisse%20der%20Effektzusammenfassung%20k%C3%B6nnen%20wir%20den%20Beitrag%20der%20unabh%C3%A4ngigen%20Variablen%20erkennen%3C%2FSTRONG%3E%3C%2FH4%3E%0A%3CP%3EAus%20den%20Ergebnissen%20der%20Effektzusammenfassung%20(Bild)%20spiegelt%20dieser%20Teil%20den%20Beitragswert%20jeder%20Variablen%20wider%2C%20der%20haupts%C3%A4chlich%20durch%20den%20LogWorth-Wert%20widergespiegelt%20wird.%20Der%20LogWorth-Wert%20ist%20gleich%20-log%3CSUB%3E%2010%3C%2FSUB%3E%20P.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EWie%20aus%20der%20folgenden%20Abbildung%20hervorgeht%2C%20sind%20unter%20den%2015%20unabh%C3%A4ngigen%20Variablen%20Atem%2C%20Mundgeruch%20und%20die%20Gewohnheit%2C%20Essst%C3%A4bchen%20zu%20verwenden%2C%20die%20gr%C3%B6%C3%9Ften%20Ausl%C3%B6ser%2C%20w%C3%A4hrend%20%C3%9Cbelkeit%20und%20Magenschmerzen%20einen%20geringeren%20Einfluss%20haben.%20Dieses%20Ergebnis%20kann%20intuitiv%20den%20Beitrag%20der%20unabh%C3%A4ngigen%20Variablen%20widerspiegeln%20und%20auch%20als%20Referenz%20f%C3%BCr%20das%20weitere%20Variablenscreening%20verwendet%20werden.%20Aus%20dem%20Gesamtmodelltest%20geht%20hervor%2C%20dass%20der%20Wert%20der%20Wahrscheinlichkeit%20%26gt%3B%20Chi-Quadrat%20weniger%20als%200%2C001%20betr%C3%A4gt%2C%20was%20beweist%2C%20dass%20das%20Modell%20statistisch%20signifikant%20ist.%20Dabei%20werden%20Variablen%20mit%20geringen%20Beitragswerten%20gel%C3%B6scht.%3C%2FP%3E%0A%3CP%3E%3CEM%3E%26nbsp%3B%3C%2FEM%3E%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_20-1682319390749.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_20-1682319390749.png%22%20style%3D%22width%3A%20391px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_20-1682319390749.png%22%20style%3D%22width%3A%20391px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_20-1682319390749.png%22%20style%3D%22width%3A%20391px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_20-1682319390749.png%22%20style%3D%22width%3A%20391px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F52268iE4C77E3E59D6368E%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_20-1682319390749.png%22%20alt%3D%22Michelle_Wu_20-1682319390749.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3EVor%20dem%20L%C3%B6schen%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_21-1682319402288.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_21-1682319402288.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_21-1682319402288.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_21-1682319402288.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_21-1682319402288.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F52269i80202D3161AD9296%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_21-1682319402288.png%22%20alt%3D%22Michelle_Wu_21-1682319402288.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3ENach%20dem%20L%C3%B6schen%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%3CSTRONG%3EParametersch%C3%A4tzungen%3C%2FSTRONG%3E%3C%2FP%3E%0A%3CP%3EDurch%20Parametersch%C3%A4tzung%20(Bild)%20kann%20die%20Formel%20des%20entsprechenden%20Vorhersagemodells%20sowie%20der%20Einfluss%20jeder%20Variablen%20auf%20die%20endg%C3%BCltige%20Beobachtung%20ermittelt%20werden.%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_22-1682319411917.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_22-1682319411917.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_22-1682319411917.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_22-1682319411917.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_22-1682319411917.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F52270i21D4940D1916E35C%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_22-1682319411917.png%22%20alt%3D%22Michelle_Wu_22-1682319411917.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%3CSTRONG%3EModell%20Best%C3%A4tigung%3C%2FSTRONG%3E%3C%2FP%3E%0A%3CP%3EDie%20Fl%C3%A4chen%20unter%20der%20ROC-Kurve%20der%20Trainingsgruppe%20und%20der%20Validierungsgruppe%20betrugen%200%2C7334%20(95%20%25-KI%200%2C709%20~%200%2C784)%20bzw.%200%2C7153%20(95%20%25-KI%200%2C6729%20~%200%2C7577).%20Nach%20der%20Analyse%20liegt%20das%20Modell%20auf%20einem%20guten%20Niveau.%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_23-1682319422771.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_23-1682319422771.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_23-1682319422771.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_23-1682319422771.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_23-1682319422771.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F52271i339947A13ED8EFD6%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_23-1682319422771.png%22%20alt%3D%22Michelle_Wu_23-1682319422771.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CH4%20id%3D%22toc-hId--1059970161%22%20id%3D%22toc-hId--1059970127%22%20id%3D%22toc-hId--1059970127%22%20id%3D%22toc-hId--1059970127%22%20id%3D%22toc-hId--1059970127%22%3E%3CSTRONG%3EBestimmen%20Sie%20anhand%20der%20Waldkarte%2C%20welche%20Faktoren%20Schutzfaktoren%20und%20welche%20gef%C3%A4hrliche%20Faktoren%20sind%3C%2FSTRONG%3E%3C%2FH4%3E%0A%3CP%3ESpeichern%20Sie%20die%20Tabelle%20mit%20mehreren%20logistischen%20Regressionsergebnissen%20und%20OR-Werten%20und%20erstellen%20Sie%20im%20Diagrammgenerator%20ein%20Gesamtstrukturdiagramm%20basierend%20auf%20der%20Reihe%20von%20OR-Daten.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_24-1682319442345.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_24-1682319442345.png%22%20style%3D%22width%3A%20815px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_24-1682319442345.png%22%20style%3D%22width%3A%20815px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_24-1682319442345.png%22%20style%3D%22width%3A%20815px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_24-1682319442345.png%22%20style%3D%22width%3A%20815px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F52272i9DFCEB93D2BAE69E%2Fimage-size%2Flarge%3Fv%3Dv2%26amp%3Bpx%3D999%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_24-1682319442345.png%22%20alt%3D%22Michelle_Wu_24-1682319442345.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_25-1682319451202.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_25-1682319451202.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_25-1682319451202.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_25-1682319451202.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_25-1682319451202.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F52273i2EFBB110436183C7%2Fimage-size%2Flarge%3Fv%3Dv2%26amp%3Bpx%3D999%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_25-1682319451202.png%22%20alt%3D%22Michelle_Wu_25-1682319451202.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EDurch%20die%20Ein-Faktor-zu-Mehr-Faktor-Regressionsanalyse%20l%C3%A4sst%20sich%20dies%20erkennen%3CSTRONG%3E%20Bl%C3%A4hungen%2C%20Mundgeruch%2C%20Mittagessen%3C%2FSTRONG%3E%3CSTRONG%3E%20(%3C%2FSTRONG%3E%3CSTRONG%3E%20Kochen%20Sie%20es%20zu%20Hause%3C%2FSTRONG%3E%3CSTRONG%3E%20)%3C%2FSTRONG%3E%3CSTRONG%3E%20%2C%20ob%20Sie%20zu%20Hause%20und%20beim%20Ausgehen%20Essst%C3%A4bchen%20verwenden%2C%20ob%20Ihre%20Familienmitglieder%20infiziert%20sind%20und%20auf%20wie%20vielen%20Etagen%20Sie%20wohnen%2C%20sind%20die%20Hauptfaktoren%20f%C3%BCr%20eine%20Helicobacter-pylori-Infektion.%3C%2FSTRONG%3E%20Anhand%20der%20Waldkarte%20k%C3%B6nnen%20wir%20erkennen%2C%20welche%20Faktoren%20Schutzfaktoren%20und%20welche%20gef%C3%A4hrliche%20Faktoren%20sind.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EZusammenfassend%20l%C3%A4sst%20sich%20sagen%2C%20dass%20wir%20durch%20die%20Analyse%20der%20Infektionsmerkmale%20und%20Risikoverhaltensfaktoren%20von%20Helicobacter%20pylori%20eine%20Richtung%20f%C3%BCr%20die%20Erforschung%20der%20Infektionswege%20von%20Helicobacter%20pylori%20vorgeben%20und%20auf%20der%20Grundlage%20des%20erstellten%20Modells%20Pflegestrategien%20vor%20der%20Behandlung%20formulieren%20k%C3%B6nnen.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%3CSTRONG%3E%3CEM%3EOriginaltextindex%3C%2FEM%3E%3C%2FSTRONG%3E%3CEM%3E%20%3A%20Data%20Mining%20zur%20Erstellung%20von%20Vorhersagemodellen%20sowie%20Pr%C3%A4ventions-%20und%20Behandlungsstrategien%20f%C3%BCr%20Patienten%20mit%20Helicobacter-pylori-Infektion%3C%2FEM%3E%3CEM%3E%20%5BJ%5D.%3C%2FEM%3E%3CEM%3E%20Zeitschrift%20f%C3%BCr%20Gastroenterologie%20und%20Hepatologie%3C%2FEM%3E%3CEM%3E%20%2C2022%2C31(09)%3A%3C%2FEM%3E%3CEM%3E%20992-998.%3C%2FEM%3E%3C%2FP%3E%0A%3CP%3E%3CEM%3E%26nbsp%3B%3C%2FEM%3E%3C%2FP%3E%0A%3CP%3EWenn%20Sie%20sich%20f%C3%BCr%20die%20Ideen%20und%20Methoden%20dieser%20Fallstudie%20interessieren%20oder%20weitere%20vertiefende%20Gespr%C3%A4che%20mit%20dem%20Autor%20f%C3%BChren%20m%C3%B6chten%2C%20k%C3%B6nnen%20Sie%20sich%20gerne%20f%C3%BCr%20das%20JMP-Online-Seminar%20am%2027.%20April%2C%2014%3A00-15%3A30%20Uhr%20anmelden%3A%3C%2FP%3E%0A%3CP%3E%3CA%20href%3D%22https%3A%2F%2Fwww.jmp.com%2Fzh_tw%2Fevents%2Flive-webinars%2Fnon-series%2F2023-04-27.html%3Futm_source%3Djmpcommunity%26amp%3Butm_medium%3Darticle%26amp%3Butm_campaign%3Dpost%22%20target%3D%22_blank%22%20rel%3D%22noopener%20noreferrer%22%3EKlicken%20Sie%20hier%2C%20um%20sich%20zu%20registrieren%3C%2FA%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EZu%20diesem%20Zeitpunkt%20wird%20Dr.%20Yuan%20den%20JMP-Live-%C3%9Cbertragungsraum%20besuchen%2C%20um%20Ihnen%20ausf%C3%BChrlich%20die%20wertvollen%20Analyseideen%20und%20Erfahrungen%20dieser%20Fallstudie%20mitzuteilen.%20Wundervoller%20Inhalt%2C%20verpassen%20Sie%20ihn%20nicht!%20Jetzt%3CA%20href%3D%22https%3A%2F%2Fwww.jmp.com%2Fzh_tw%2Fdownload-jmp-free-trial.html%3Futm_source%3Dspeaker%26amp%3Butm_medium%3Dinvite%26amp%3Butm_campaign%3Dpost%22%20target%3D%22_blank%22%20rel%3D%22noopener%20noreferrer%22%3E%20Testen%20Sie%20JMP%2017%2030%20Tage%20lang%20kostenlos%3C%2FA%3E%20.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3ELiteratur-Empfehlungen%3A%3C%2FP%3E%0A%3CUL%3E%0A%3CLI%3E%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2FJMP-Blog%2F5%25E5%2580%258B%25E7%2590%2586%25E7%2594%25B1%25E5%2591%258A%25E8%25A8%25B4%25E4%25BD%25A0-%25E7%2582%25BA%25E4%25BB%2580%25E9%25BA%25BCJMP%25E8%25BB%259F%25E9%25AB%2594%25E6%259B%25B4%25E9%2581%25A9%25E5%2590%2588%25E4%25BD%25A0%2Fba-p%2F287319%3FtrMode%3Dsource%22%20target%3D%22_blank%22%3E5%3CSPAN%3E%20Lassen%20Sie%20mich%20Ihnen%20einen%20Grund%20daf%C3%BCr%20nennen%3C%2FSPAN%3E%20JMP%3CSPAN%3E%20Ist%20Software%20besser%20f%C3%BCr%20Sie%3F%3C%2FSPAN%3E%3C%2FA%3E%3C%2FLI%3E%0A%3CLI%3E%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2FJMP-Blog%2F%25E8%2587%25A8%25E5%25BA%258A%25E8%25A9%25A6%25E9%25A9%2597%25E4%25B8%25AD%25E4%25B8%258D%25E8%2589%25AF%25E4%25BA%258B%25E4%25BB%25B6%25E8%25B3%2587%25E6%2596%2599%25E7%259A%2584%25E8%25A6%2596%25E8%25A6%25BA%25E5%258C%2596%25E8%25A9%2595%25E5%2583%25B9%2Fba-p%2F237881%3FtrMode%3Dsource%22%20target%3D%22_blank%22%3E%3CSPAN%3EVisuelle%20Auswertung%20von%20Daten%20zu%20unerw%C3%BCnschten%20Ereignissen%20in%20klinischen%20Studien%3C%2FSPAN%3E%3C%2FA%3E%3C%2FLI%3E%0A%3CLI%3E%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2FJMP-Blog%2FDOE%25E5%259C%25A8%25E7%2594%259F%25E7%2589%25A9%25E8%25A3%25BD%25E8%2597%25A5%25E6%25B5%2581%25E7%25A8%258B%25E9%2596%258B%25E7%2599%25BC%25E4%25B8%25AD%25E6%2587%2589%25E7%2594%25A8%25E4%25B9%258B%25E8%25A7%25A3%25E6%259E%2590%2Fba-p%2F224766%3FtrMode%3Dsource%22%20target%3D%22_blank%22%3EDAMHIRSCHKUH%3CSPAN%3E%20Analyse%20der%20Anwendung%20in%20der%20biopharmazeutischen%20Prozessentwicklung%3C%2FSPAN%3E%3C%2FA%3E%3C%2FLI%3E%0A%3CLI%3E%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2FJMP-Blog%2F%25E5%25A4%259A%25E8%25AE%258A%25E9%2587%258F%25E8%25B3%2587%25E6%2596%2599%25E5%2588%2586%25E6%259E%2590%25E5%259C%25A8%25E7%2594%259F%25E7%2589%25A9%25E8%25A3%25BD%25E8%2597%25A5%25E6%25B5%2581%25E7%25A8%258B%25E4%25B8%25AD%25E7%259A%2584%25E6%2587%2589%25E7%2594%25A8%2Fba-p%2F223059%3FtrMode%3Dsource%22%20target%3D%22_blank%22%3E%3CSPAN%3EAnwendung%20multivariater%20Datenanalyse%20in%20biopharmazeutischen%20Prozessen%3C%2FSPAN%3E%3C%2FA%3E%3C%2FLI%3E%0A%3C%2FUL%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-TEASER%20id%3D%22lingo-teaser-625330%22%20slang%3D%22zh-TW%22%3E%3CP%3EDie%20heutige%20KI-Technologie%20f%C3%BCr%20k%C3%BCnstliche%20Intelligenz%20und%20die%20Big-Data-Analyse%20k%C3%B6nnen%20eine%20wichtige%20Rolle%20in%20der%20Forschung%20und%20Hilfsanalyse%20spielen.%20In%20diesem%20Artikel%20erfahren%20Sie%2C%20wie%20Sie%20mithilfe%20der%20Datenexploration%20die%20lineare%20Beziehung%20zwischen%20relativen%20Merkmalsdaten%20und%20Ergebnissen%20untersuchen%20und%20dabei%20die%20Visualisierung%20und%20Interpretierbarkeit%20des%20maschinellen%20Lernens%20vollst%C3%A4ndig%20anwenden.%20Ziel%20ist%20es%2C%20die%20Infektionsmethoden%20und%20gef%C3%A4hrlichen%20Verhaltensweisen%20von%20HP%20in%20China%20zu%20verstehen%20und%20eine%20bequeme%20und%20einfache%20L%C3%B6sung%20zu%20schaffen%20-zu%20verwenden.%20Und%20das%20%C3%B6konomische%20Prognose-Infektionsmodell%20bietet%20eine%20Referenz%20f%C3%BCr%20asymptomatische%20Infektionen.%3C%2FP%3E%3C%2FLINGO-TEASER%3E%3CLINGO-LABS%20id%3D%22lingo-labs-625330%22%20slang%3D%22zh-TW%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%3E%3CLINGO-LABEL%3EGrundlegende%20Datenanalyse%20und%20Modellierung%3C%2FLINGO-LABEL%3E%3CLINGO-LABEL%3EDatenexploration%20und%20-visualisierung%3C%2FLINGO-LABEL%3E%3C%2FLINGO-LABS%3E
言語を選択 翻訳バーを非表示
JMP_Taiwan
Level VI
應用案例:基於JMP資料探勘找出幽門螺旋桿菌感染患者的影響因子

幽門螺旋桿菌(以下簡稱Hp)感染已經是個國際問題,中國Hp感染率約為50%~90%,高於發達國家平均水平(50%~70%)。幽門螺旋桿菌感染已經成為我國一個公共衛生健康危機。目前中國國內對Hp感染途徑和危險行為還未有一致意見,該如何有效找出其疾病的影響因子,亦是研究上值得討論的話題。

 

現今AI人工智慧技術及大數據分析可以在研究和輔助分析方面發揮重要作用。本次研究為廣東省中山市中醫院主管藥師袁一鳴,分享他如何利用數據探勘探究相對的特徵數據和結果之間的線性關係,充分應用機器學習的視覺化和可解釋性,旨在瞭解Hp在中國的感染方式和危險行為,建立起使用便捷且經濟的預測感染模型,為無症狀感染者提供參考。

 

本次研究選擇內窺鏡及體檢中心接受碳13、碳14呼氣試驗或胃鏡下取粘膜試驗檢查幽門螺旋桿菌檢測的健康體檢人群為研究對象。

 

研究者根據專家和文獻資料自行設計與幽門螺旋桿菌感染相關的二分類及多分類組成的非量表電子調查表。問卷表分為三個維度63個變量:①患者基本信息表,②臨床表徵表和③生活和飲食習慣表。

 

研究者採用JMP Pro 對數據進行統計分析。首先對數據進行單因素分析,進而進行多元邏輯回歸分析,建立預測模型,最終基於模型效應項的結果繪製森林圖。

 

主要分析思路及步驟

第一步:針對現有資料進行資料清洗

利用JMP可以對批量變量進行分類管理。由於收集的變量是定性變量,在JMP Pro 對所有變量進行標準化列特徵操作,將所有變量統一轉化為字符型名字變量。

Michelle_Wu_13-1682319201572.png

 

Michelle_Wu_14-1682319221226.png

 

第二步:生成驗證列

利用JMP的驗證功能可以對數據進行訓練集和驗證集分類。按7.5:2.5隨機抽取為訓練組和驗證組,如下圖:

Michelle_Wu_15-1682319265965.png

 

第三步:單因素分析

通過列聯分析和 Distribution平台可以發現,人群的居住樓層、胃痛、反酸、胃脹、沒有食欲、口氣口臭、口苦、胃鳴、饑餓感、貧血、午餐在家煮食、吸煙、外出使用公筷、使用公筷的習慣、家人朋友是否有感染有顯著性外,其他變量都沒有統計學意義。

 

Michelle_Wu_16-1682319298783.png

Michelle_Wu_17-1682319350708.png

 

第四步:多因素分析

在JMP中依次點擊「分析」菜單→「擬合模型(Fit Model)」(圖2),在彈出的對話框中將是否感染幽門桿菌導入「Y」,將擬進行多因素分析的自變量導入「構造模型效應」框中。以生成驗證列為依據,進行驗證。

 

Michelle_Wu_18-1682319358370.png

 

從下圖所示的效應似然比檢驗如下圖中,可以看到,口氣、口臭、是否使用公筷、午餐在家煮、使用公筷的習慣貧血、家住多少樓概率>卡方,具有統計學意義。

 

Michelle_Wu_19-1682319365770.png

 

 

從效應匯總結果,看出自變量的貢獻大小

從效應匯總結果(圖),該部分反映的是各自變量的貢獻值大小,主要通過LogWorth值來反映,LogWorth值等於 -log10P。

 

從下圖可以看出,15個自變量中貢獻最大的是口氣、口臭和使用公筷習慣,而噁心、胃痛的影響較小。該結果可以直觀反映出自變量的貢獻大小,也可以作為後續進一步進行變量篩選的參考依據。從整體模型檢驗中,概率>卡方的值小於0.001,證明構建模型有統計學意義。這裡對貢獻值偏低的變量進行刪減。

 

Michelle_Wu_20-1682319390749.png

刪減前

 

Michelle_Wu_21-1682319402288.png

刪減後

 

參數估計值

通過參數估計(圖),可以得到相應的預測模式的公式,及每個變量對於最終觀測的影響。

Michelle_Wu_22-1682319411917.png

 

模型驗證

訓練組和驗證組 ROC 曲線下面積分別為 0.7334 ( 95% CI 0.709 ~ 0.784)、0.7153( 95% CI 0.6729 ~ 0.7577)。經分析,該模型處於良好水平。

Michelle_Wu_23-1682319422771.png

 

根據森林圖,得出哪些因素為保護因素,哪些是危險因素

保存多元邏輯回歸的結果及OR值的表格,並基於該系列OR數據在圖形生成器中製作森林圖。

 

Michelle_Wu_24-1682319442345.png

 

Michelle_Wu_25-1682319451202.png

 

透過單因素到多因素回歸分析,可以看出胃脹口氣、口臭、午餐(在家自己煮)、在家與外出是否有使用公筷習慣、同居家人是否有感染、家住多少層樓是幽門螺旋桿菌感染主要因素。透過森林圖,可以看出,哪些因素為保護因素,哪些是危險因素。

 

綜上所述,通過分析幽門螺旋桿菌的感染特徵及危險行為因素,為探索幽門螺桿菌感染途徑提供方向,依據構建的模型制定預治護理策略。

 

原文索引:數據挖掘構建幽門螺桿菌感染患者的預測模型和防治策略[J].胃腸病學和肝病學雜誌,2022,31(09):992-998.

 

如果對本文案例研究的思路和方法感興趣或者想要與作者進一步深入交流探討的話,歡迎報名參加4月27日14:00-15:30 JMP 線上研討會:

按此報名參加

 

屆時,袁醫生將親臨JMP直播間,與各位詳細分享此次案例研究寶貴的分析思路與經驗心得。精彩內容,不容錯過!現在免費試用JMP 17 30天

 

推薦閱讀:

 

最終変更日: Apr 24, 2023 3:15 AM