cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

JMP Blog

A blog for anyone curious about data visualization, design of experiments, statistics, predictive modeling, and more
%3CLINGO-SUB%20id%3D%22lingo-sub-842263%22%20slang%3D%22zh-TW%22%20mode%3D%22UPDATE%22%3E%C2%BFC%C3%B3mo%20mejorar%20eficazmente%20la%20eficiencia%20del%20modelado%20de%20materias%20primas%20y%20reducir%20los%20costos%20experimentales%3F%20Optimizaci%C3%B3n%20del%20rendimiento%20de%20la%20relaci%C3%B3n%20cuantitativa%20estructura-actividad%20(QSAR)%3A%204%20pasos%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-842263%22%20slang%3D%22zh-TW%22%20mode%3D%22UPDATE%22%3E%3CP%3EEn%20el%20campo%20de%20la%20investigaci%C3%B3n%2C%20el%20desarrollo%20y%20la%20fabricaci%C3%B3n%20de%20materiales%2C%20el%20dise%C3%B1o%20experimental%20es%20un%20paso%20clave%20en%20la%20evaluaci%C3%B3n%20de%20las%20propiedades%20de%20la%20materia%20prima%20y%20las%20condiciones%20del%20proceso.%20Sin%20embargo%2C%20los%20m%C3%A9todos%20experimentales%20tradicionales%20aumentar%C3%A1n%20significativamente%20el%20n%C3%BAmero%20de%20experimentos%20a%20medida%20que%20aumenta%20el%20n%C3%BAmero%20de%20tipos%20de%20materias%20primas%2C%20lo%20que%20genera%20un%20aumento%20en%20el%20tiempo%20y%20el%20costo.%20Adem%C3%A1s%2C%20cuando%20se%20a%C3%B1aden%20nuevos%20materiales%2C%20a%20menudo%20es%20necesario%20rehacer%20el%20dise%C3%B1o%20experimental%2C%20lo%20que%20aumenta%20la%20incertidumbre%20de%20la%20I%2BD.%20Para%20resolver%20este%20problema%2C%20se%20puede%20introducir%20el%20m%C3%A9todo%20QSAR%20(Relaci%C3%B3n%20cuantitativa%20estructura-actividad)%20en%20el%20proceso%20experimental%20para%20mejorar%20la%20eficiencia%20de%20la%20selecci%C3%B3n%20y%20el%20an%C3%A1lisis%20de%20materias%20primas%20a%20trav%C3%A9s%20del%20modelado%20de%20datos%2C%20reduciendo%20as%C3%AD%20los%20costos%20experimentales%20y%20mejorando%20la%20precisi%C3%B3n%20en%20la%20toma%20de%20decisiones.%3C%2FP%3E%0A%3CH3%20id%3D%22toc-hId-1623598328%22%20id%3D%22toc-hId-1623600218%22%3E%3CSTRONG%3EQu%C3%A9%20es%3C%2FSTRONG%3E%3CSTRONG%3EQSAR%3C%2FSTRONG%3E%3CSTRONG%3E%C2%BFm%C3%A9todo%3F%3C%2FSTRONG%3E%3CSTRONG%3EQSAR%3C%2FSTRONG%3E%3CSTRONG%3EAplicaci%C3%B3n%20del%20m%C3%A9todo%20en%20el%20cribado%20de%20materias%20primas%3C%2FSTRONG%3E%3C%2FH3%3E%0A%3CP%3EQSAR%20(Quantitative%20Structure-Activity%20Relationship)%20es%20un%20m%C3%A9todo%20para%20establecer%20un%20modelo%20matem%C3%A1tico%20basado%20en%20la%20relaci%C3%B3n%20entre%20la%20estructura%20molecular%20y%20la%20actividad%20de%20un%20compuesto.%20Este%20concepto%20se%20propuso%20por%20primera%20vez%20en%20el%20siglo%20XVIII%20y%20ahora%20se%20utiliza%20ampliamente%20en%20el%20desarrollo%20de%20f%C3%A1rmacos%2C%20la%20qu%C3%ADmica%20y%20la%20ciencia%20de%20los%20materiales.%20El%20QSAR%20tradicional%20se%20utiliza%20principalmente%20para%20el%20estudio%20de%20la%20relaci%C3%B3n%20entre%20la%20estructura%20qu%C3%ADmica%20y%20la%20actividad%20biol%C3%B3gica%2C%20pero%20este%20caso%20ampl%C3%ADa%20su%20%C3%A1mbito%20de%20aplicaci%C3%B3n%20a%20las%20propiedades%20f%C3%ADsicas%20y%20qu%C3%ADmicas%2C%20utilizando%20datos%20de%20estructura%20molecular%20para%20mejorar%20la%20eficiencia%20de%20la%20selecci%C3%B3n%20y%20modelado%20de%20materias%20primas.%3C%2FP%3E%0A%3CH3%20id%3D%22toc-hId--928558633%22%20id%3D%22toc-hId--928556743%22%3E%3CSTRONG%3ECaso%3A%20Desde%3C%2FSTRONG%3E%3CSTRONG%3E45%3C%2FSTRONG%3E%3CSTRONG%3ESelecci%C3%B3n%20de%20materias%20primas%3C%2FSTRONG%3E%3CSTRONG%3E12%3C%2FSTRONG%3E%3CSTRONG%3EDise%C3%B1o%20experimental%3C%2FSTRONG%3E%3C%2FH3%3E%0A%3CP%3EUna%20empresa%20desea%20realizar%20experimentos%20de%20formulaci%C3%B3n%20con%20diferentes%20materias%20primas%2C%20pero%20debido%20a%20consideraciones%20de%20costos%2C%20necesita%20reducir%20%3CSPAN%3E45%3C%2FSPAN%3E%20materias%20primas%20a%20%3CSPAN%3E12%3C%2FSPAN%3E%20.%20Para%20este%20fin%2C%20el%20equipo%20utiliz%C3%B3%20el%20m%C3%A9todo%20%3CSPAN%3EQSAR%3C%2FSPAN%3E%20para%20examinar%20%3CSPAN%3E19%3C%2FSPAN%3E%20caracter%C3%ADsticas%20de%20estructura%20molecular%20y%20%3CSPAN%3E2%3C%2FSPAN%3E%20variables%20%3CSPAN%3EY%3C%2FSPAN%3E%20clave%20y%20dise%C3%B1%C3%B3%20el%20mejor%20plan%20experimental.%20Los%20siguientes%20son%20los%20pasos%20experimentales%20espec%C3%ADficos%3A%3C%2FP%3E%0A%3CH4%20id%3D%22toc-hId-617738197%22%20id%3D%22toc-hId-617740087%22%3E%3CSTRONG%3EPaso%20%3CSPAN%3E1%3C%2FSPAN%3E%20%3A%20Convertir%20factores%20categ%C3%B3ricos%20en%20factores%20continuos%3C%2FSTRONG%3E%3C%2FH4%3E%0A%3CP%3EDado%20que%20las%20propiedades%20qu%C3%ADmicas%20de%20las%20materias%20primas%20son%20variables%20categ%C3%B3ricas%2C%20es%20necesario%20convertirlas%20en%20variables%20continuas%20cuantificables%20a%20trav%C3%A9s%20del%20conocimiento%20profesional%20y%20la%20experiencia%20en%20an%C3%A1lisis%20de%20datos%2C%20como%20se%20muestra%20en%20la%20%3CSPAN%3E(%3C%2FSPAN%3E%20Figura%20%3CSPAN%3E1)%3C%2FSPAN%3E%20.%20Por%20ejemplo%2C%20en%20funci%C3%B3n%20de%20las%20caracter%C3%ADsticas%20estructurales%20moleculares%2C%20se%20extraen%20variables%20predictivas%20clave%20para%20permitir%20el%20modelado%20posterior.%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22JMP_Taiwan_13-1739851519695.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22JMP_Taiwan_13-1739851519695.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F73057i1B4DBCEA73555F5C%2Fimage-size%2Flarge%3Fv%3Dv2%26amp%3Bpx%3D999%22%20role%3D%22button%22%20title%3D%22JMP_Taiwan_13-1739851519695.png%22%20alt%3D%22JMP_Taiwan_13-1739851519695.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E(Figura%20%3CSPAN%3E1%3A%3C%2FSPAN%3E%20Cada%20material%20tiene%20datos%20de%20estructura%20molecular%20correspondientes%20%3CSPAN%3E)%3C%2FSPAN%3E%3C%2FP%3E%0A%3CBR%20%2F%3E%0A%3CH4%20id%3D%22toc-hId--1934418764%22%20id%3D%22toc-hId--1934416874%22%3E%3CSTRONG%3EPaso%20%3CSPAN%3E2%3C%2FSPAN%3E%20%3A%20Reducci%C3%B3n%20de%20la%20dimensionalidad%20y%20decorrelaci%C3%B3n%20mediante%20an%C3%A1lisis%20de%20componentes%20principales%20%3CSPAN%3E(PCA)%3C%2FSPAN%3E%3C%2FSTRONG%3E%3C%2FH4%3E%0A%3CP%3EEn%20el%20an%C3%A1lisis%20multivariado%2C%20muchas%20variables%20pueden%20estar%20altamente%20correlacionadas%20%3CSPAN%3E(%3C%2FSPAN%3E%20Figura%20%3CSPAN%3E2)%3C%2FSPAN%3E%20%2C%20lo%20que%20afecta%20la%20precisi%C3%B3n%20del%20modelado.%20Por%20lo%20tanto%2C%20el%20equipo%20de%20investigaci%C3%B3n%20utiliz%C3%B3%20el%20an%C3%A1lisis%20de%20componentes%20principales%20%3CSPAN%3E(ACP)%3C%2FSPAN%3E%20para%20transformar%20las%20variables%20en%20variables%20independientes%2C%20como%20se%20muestra%20en%20la%20%3CSPAN%3E(%3C%2FSPAN%3E%20Figura%20%3CSPAN%3E3)%3C%2FSPAN%3E%20%2C%20para%20reducir%20la%20dimensi%C3%B3n%20y%20evitar%20problemas%20de%20colinealidad.%20Este%20proceso%20ayuda%20en%20el%20modelado%20posterior%20y%20la%20selecci%C3%B3n%20de%20variables.%3CSPAN%3E%3CBR%20%2F%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22JMP_Taiwan_14-1739851519717.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22JMP_Taiwan_14-1739851519717.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F73056i6DEEECBA8703847B%2Fimage-size%2Flarge%3Fv%3Dv2%26amp%3Bpx%3D999%22%20role%3D%22button%22%20title%3D%22JMP_Taiwan_14-1739851519717.png%22%20alt%3D%22JMP_Taiwan_14-1739851519717.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E(Figura%20%3CSPAN%3E2)%3C%2FSPAN%3E%20An%C3%A1lisis%20de%20correlaci%C3%B3n%3CSPAN%3E%3CBR%20%2F%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CBR%20%2F%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22JMP_Taiwan_15-1739851519720.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22JMP_Taiwan_15-1739851519720.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F73055i70C9A142496899BD%2Fimage-size%2Flarge%3Fv%3Dv2%26amp%3Bpx%3D999%22%20role%3D%22button%22%20title%3D%22JMP_Taiwan_15-1739851519720.png%22%20alt%3D%22JMP_Taiwan_15-1739851519720.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22JMP_Taiwan_16-1739851519722.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22JMP_Taiwan_16-1739851519722.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F73058iE10CF1F39AAE4E34%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22JMP_Taiwan_16-1739851519722.png%22%20alt%3D%22JMP_Taiwan_16-1739851519722.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E(Figura%20%3CSPAN%3E3)%3C%2FSPAN%3E%20An%C3%A1lisis%20de%20componentes%20principales%3CSPAN%3E%3CBR%20%2F%3E%3CBR%20%2F%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CH4%20id%3D%22toc-hId--191608429%22%20id%3D%22toc-hId--191606539%22%3E%3CSTRONG%3EPaso%20%3CSPAN%3E3%3C%2FSPAN%3E%20%3A%20Dise%C3%B1a%20el%20experimento%20a%20trav%C3%A9s%20de%20%3CSPAN%3EDise%C3%B1o%20personalizado%3C%2FSPAN%3E%3C%2FSTRONG%3E%3C%2FH4%3E%0A%3CP%3EEn%20%3CSPAN%3EJMP%3C%2FSPAN%3E%20%2C%20se%20utiliz%C3%B3%20la%20%3CSPAN%3Efunci%C3%B3n%20de%20dise%C3%B1o%20personalizado%20(%3C%2FSPAN%3E%20como%20se%20muestra%20en%20la%20Figura%20%3CSPAN%3E4)%3C%2FSPAN%3E%20para%20dise%C3%B1ar%20el%20plan%20experimental%20%C3%B3ptimo%20utilizando%20los%20componentes%20principales%20transformados%20por%20%3CSPAN%3EPCA%3C%2FSPAN%3E%20como%20covariables.%20De%20esta%20manera%2C%20el%20equipo%20de%20investigaci%C3%B3n%20logr%C3%B3%20controlar%20el%20n%C3%BAmero%20de%20experimentos%20con%20una%20precisi%C3%B3n%20de%20%3CSPAN%3E12%3C%2FSPAN%3E%20veces%2C%20reduciendo%20significativamente%20los%20costos%20y%20los%20requisitos%20de%20tiempo.%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22JMP_Taiwan_17-1739851519723.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22JMP_Taiwan_17-1739851519723.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F73059i32937F96E8AE85EA%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22JMP_Taiwan_17-1739851519723.png%22%20alt%3D%22JMP_Taiwan_17-1739851519723.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E(Figura%20%3CSPAN%3E4-1)%3CBR%20%2F%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22JMP_Taiwan_18-1739851519724.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22JMP_Taiwan_18-1739851519724.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F73060i75F70E2E777FBC24%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22JMP_Taiwan_18-1739851519724.png%22%20alt%3D%22JMP_Taiwan_18-1739851519724.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E(Figura%20%3CSPAN%3E4-2)%3CBR%20%2F%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22JMP_Taiwan_19-1739851519727.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22JMP_Taiwan_19-1739851519727.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F73061i4FCD7DD93641D0EF%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22JMP_Taiwan_19-1739851519727.png%22%20alt%3D%22JMP_Taiwan_19-1739851519727.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E(Figura%20%3CSPAN%3E4-3)%3CBR%20%2F%3E%3CBR%20%2F%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CH4%20id%3D%22toc-hId-1551201906%22%20id%3D%22toc-hId-1551203796%22%3E%3CSTRONG%3EPaso%20%3CSPAN%3E4%3C%2FSPAN%3E%20%3A%20Aplicar%20%3CSPAN%3EPOR%20FAVOR%3C%2FSPAN%3E%20o%20aprendizaje%20autom%C3%A1tico%20para%20modelar%3C%2FSTRONG%3E%3C%2FH4%3E%0A%3CP%3EDespu%C3%A9s%20de%20completar%20el%20dise%C3%B1o%20experimental%2C%20utilice%20el%20m%C3%A9todo%20%3CSPAN%3EPOR%20FAVOR%3C%2FSPAN%3E%20para%20seleccionar%20un%20modelo%20de%20%3CSPAN%3E6%3C%2FSPAN%3E%20factores%20basado%20en%20%3CSPAN%3EProb%20%26gt%3B%20van%20der%20Voet%20T%20%3CSUP%3E2%3C%2FSUP%3E%3C%2FSPAN%3E%20%3CSPAN%3E(%3C%2FSPAN%3E%20como%20se%20muestra%20en%20la%20Figura%20%3CSPAN%3E5)%3C%2FSPAN%3E%20%2C%20%E2%80%8B%E2%80%8Bo%20utilice%20%3CSPAN%3Ela%20plataforma%20de%20selecci%C3%B3n%20de%20modelos%3C%2FSPAN%3E%20%3CSPAN%3E(%3C%2FSPAN%3E%20como%20se%20muestra%20en%20la%20Figura%20%3CSPAN%3E6)%3C%2FSPAN%3E%20para%20seleccionar%20m%C3%A9todos%20de%20modelado%20predictivo%20adecuados%2C%20guarde%20la%20f%C3%B3rmula%20en%20la%20tabla%20de%20datos%20y%20utilice%20el%20Perfilador%20en%20%3CSPAN%3EGr%C3%A1fico%3C%2FSPAN%3E%20%3CSPAN%3E(%3C%2FSPAN%3E%20como%20se%20muestra%20en%20la%20Figura%20%3CSPAN%3E7)%3C%2FSPAN%3E%20para%20comprender%20la%20relaci%C3%B3n%20entre%20%3CSPAN%3Ela%20variable%20X%3C%2FSPAN%3E%20y%20la%20variable%20%3CSPAN%3EY.%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22JMP_Taiwan_20-1739851519734.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22JMP_Taiwan_20-1739851519734.png%22%20style%3D%22width%3A%20727px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F73062i643BE0648D24E0ED%2Fimage-size%2Flarge%3Fv%3Dv2%26amp%3Bpx%3D999%22%20role%3D%22button%22%20title%3D%22JMP_Taiwan_20-1739851519734.png%22%20alt%3D%22JMP_Taiwan_20-1739851519734.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3EFigura%20%3CSPAN%3E5%20Plataforma%20PLS%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22JMP_Taiwan_21-1739851519741.png%22%20style%3D%22width%3A%20454px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22JMP_Taiwan_21-1739851519741.png%22%20style%3D%22width%3A%20454px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F73063i153F625F3AB5F345%2Fimage-dimensions%2F454x616%3Fv%3Dv2%22%20width%3D%22454%22%20height%3D%22616%22%20role%3D%22button%22%20title%3D%22JMP_Taiwan_21-1739851519741.png%22%20alt%3D%22JMP_Taiwan_21-1739851519741.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3EFigura%20%3CSPAN%3E6%20Plataforma%20de%20selecci%C3%B3n%20de%20modelos%3C%2FSPAN%3E%3CSPAN%3E%3CBR%20%2F%3E%3CBR%20%2F%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22JMP_Taiwan_22-1739851519743.png%22%20style%3D%22width%3A%20845px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22JMP_Taiwan_22-1739851519743.png%22%20style%3D%22width%3A%20845px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F73064i52CE9A0F121F8A13%2Fimage-dimensions%2F845x270%3Fv%3Dv2%22%20width%3D%22845%22%20height%3D%22270%22%20role%3D%22button%22%20title%3D%22JMP_Taiwan_22-1739851519743.png%22%20alt%3D%22JMP_Taiwan_22-1739851519743.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%E5%9C%96%3CSPAN%3E7%20Perfilador%3CBR%20%2F%3E%3CBR%20%2F%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CH3%20id%3D%22toc-hId--804441550%22%20id%3D%22toc-hId--804439660%22%3E%3CSTRONG%3Eresumen%3C%2FSTRONG%3E%3C%2FH3%3E%0A%3CP%3EEste%20caso%20demuestra%20que%20la%20aplicaci%C3%B3n%20de%20la%20tecnolog%C3%ADa%20de%20modelado%20de%20datos%20a%20la%20selecci%C3%B3n%20de%20materias%20primas%20puede%20mejorar%20significativamente%20la%20eficiencia%20de%20I%2BD%20y%20brindar%20m%C3%A1s%20posibilidades%20para%20la%20optimizaci%C3%B3n%20de%20procesos%20futuros.%3C%2FP%3E%0A%3CP%3EGracias%20a%20este%20caso%2C%20los%20investigadores%20pueden%20ampliar%20las%20variables%20para%20realizar%20el%20dise%C3%B1o%20experimental%20junto%20con%20las%20variables%20del%20proceso.%20Adem%C3%A1s%2C%20el%20uso%20del%20m%C3%A9todo%20%3CSPAN%3EQSAR%3C%2FSPAN%3E%20al%20seleccionar%20los%20tipos%20de%20materiales%20no%20solo%20reduce%20el%20n%C3%BAmero%20de%20experimentos%2C%20sino%20que%20tambi%C3%A9n%20permite%20la%20b%C3%BAsqueda%20inversa%20de%20materiales%2C%20lo%20que%20puede%20mejorar%20significativamente%20la%20eficiencia%20de%20la%20selecci%C3%B3n%20de%20materias%20primas%20y%20evitar%20el%20desperdicio%20de%20costos%20experimentales%2C%20lo%20que%20brinda%20m%C3%A1s%20posibilidades%20para%20la%20optimizaci%C3%B3n%20futura%20del%20proceso.%20Con%20el%20avance%20continuo%20de%20la%20ciencia%20de%20los%20materiales%20y%20la%20tecnolog%C3%ADa%20de%20an%C3%A1lisis%20de%20datos%2C%20este%20m%C3%A9todo%20se%20convertir%C3%A1%20en%20una%20herramienta%20importante%20para%20que%20las%20empresas%20mejoren%20sus%20capacidades%20de%20toma%20de%20decisiones%20en%20I%2BD%20y%20en%20la%20clave%20para%20la%20futura%20actualizaci%C3%B3n%20industrial.%3C%2FP%3E%0A%3CBR%20%2F%3E%0A%3CP%3E%3CSTRONG%3EReferencias%3C%2FSTRONG%3E%3C%2FP%3E%0A%3COL%3E%0A%3CLI%3E%3CSPAN%3E%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2FDiscovery-Summit-Europe-2017%2FIncrease-Efficiency-and-Model-Applicability-Domain-When-Testing%2Fta-p%2F36572%22%20target%3D%22_blank%22%3Ehttps%3A%2F%2Fcommunity.jmp.com%2Ft5%2FDiscovery-Summit-Europe-2017%2FIncrease-Efficiency-and-Model-Applicability-Domain-When-Testing%2Fta-p%2F36572%3C%2FA%3E%3C%2FSPAN%3E%20Presentaci%C3%B3n%20de%202017%3C%2FLI%3E%0A%3CLI%3E%3CSPAN%3E%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2FLearn-JMP-Events%2FJMP-Academic-Webinar-Teaching-Analytics-in-Chemistry-and%2Fev-p%2F481604%22%20target%3D%22_blank%22%3Ehttps%3A%2F%2Fcommunity.jmp.com%2Ft5%2FLearn-JMP-Events%2FJMP-Academic-Webinar-Teaching-Analytics-in-Chemistry-and%2Fev-p%2F481604%3C%2FA%3E%3C%2FSPAN%3E%20Seminario%20web%20acad%C3%A9mico%20de%20JMP%3A%20Ense%C3%B1anza%20de%20an%C3%A1lisis%20en%20qu%C3%ADmica%20e%20ingenier%C3%ADa%20qu%C3%ADmica%20con%20JMP%3A%20una%20introducci%C3%B3n%20pr%C3%A1ctica%20Caso%202%3C%2FLI%3E%0A%3C%2FOL%3E%0A%3CH3%20id%3D%22toc-hId-938368785%22%20id%3D%22toc-hId-938370675%22%3E%3CSTRONG%3EM%C3%A1s%20recursos%20de%20aprendizaje%3C%2FSTRONG%3E%3C%2FH3%3E%0A%3CUL%3E%0A%3CLI%3E%3CA%20href%3D%22https%3A%2F%2Fwww.jmp.com%2Fzh_tw%2Fwhitepapers%2Fjmp%2Fmachine-learning-applications-for-chemical-and-process-industries.html%22%20target%3D%22_blank%22%20rel%3D%22noopener%20noreferrer%22%3E%3CSPAN%3EAplicaci%C3%B3n%20del%20aprendizaje%20autom%C3%A1tico%20en%20la%20industria%20qu%C3%ADmica%20y%20manufacturera%3C%2FSPAN%3E%3C%2FA%3E%3C%2FLI%3E%0A%3CLI%3E%3CA%20href%3D%22https%3A%2F%2Fwww.jmp.com%2Fzh_tw%2Fevents%2Fondemand%2Fnon-series%2Fjmp-chemical.html%22%20target%3D%22_blank%22%20rel%3D%22noopener%20noreferrer%22%3E%3CSPAN%3EAplicaci%C3%B3n%20de%20JMP%20en%20la%20industria%20qu%C3%ADmica%3A%20dos%20casos%20de%20estudio%3C%2FSPAN%3E%3C%2FA%3E%3C%2FLI%3E%0A%3CLI%3E%3CA%20href%3D%22https%3A%2F%2Fwww.jmp.com%2Fzh_tw%2Fevents%2Fondemand%2Fnon-series%2Fdoe-2024.html%22%20target%3D%22_blank%22%20rel%3D%22noopener%20noreferrer%22%3ECaso%20pr%C3%A1ctico%20cl%C3%A1sico%20del%20DOE%3A%203%20%3CSPAN%3Em%C3%A9todos%20de%20dise%C3%B1o%20experimental%3C%2FSPAN%3E%20%3CSPAN%3Epara%20el%20desarrollo%20de%20productos%20y%20la%20optimizaci%C3%B3n%20de%20procesos%3C%2FSPAN%3E%3C%2FA%3E%3C%2FLI%3E%0A%3CLI%3E%3CA%20href%3D%22https%3A%2F%2Fwww.jmp.com%2Fzh_tw%2Fdownload-jmp-free-trial.html%22%20target%3D%22_blank%22%20rel%3D%22noopener%20noreferrer%22%3EDescarga%20JMP%20gratis%20y%20pru%C3%A9balo%20durante%2030%20d%C3%ADas%3C%2FA%3E%3C%2FLI%3E%0A%3C%2FUL%3E%0A%3CBR%20%2F%3E%3C%2FLINGO-BODY%3E%3CLINGO-TEASER%20id%3D%22lingo-teaser-842263%22%20slang%3D%22zh-TW%22%20mode%3D%22UPDATE%22%3E%3CDIV%20class%3D%22flex%20max-w-full%20flex-col%20flex-grow%22%3E%0A%3CDIV%20class%3D%22min-h-8%20text-message%20flex%20w-full%20flex-col%20items-end%20gap-2%20whitespace-normal%20break-words%20text-start%20%5B.text-message%2B%26amp%3B%5D%3Amt-5%22%20dir%3D%22auto%22%20data-message-author-role%3D%22assistant%22%20data-message-id%3D%22661b989f-c0a7-4f35-a698-50dda0cb6c43%22%20data-message-model-slug%3D%22gpt-4o%22%3E%0A%3CDIV%20class%3D%22flex%20w-full%20flex-col%20gap-1%20empty%3Ahidden%20first%3Apt-%5B3px%5D%22%3E%0A%3CDIV%20class%3D%22markdown%20prose%20w-full%20break-words%20dark%3Aprose-invert%20dark%22%3E%0A%3CP%20data-start%3D%220%22%20data-end%3D%22145%22%20data-is-last-node%3D%22%22%3ESi%20trabaja%20en%20una%20empresa%20qu%C3%ADmica%20o%20de%20materiales%2C%20%C2%BFc%C3%B3mo%20puede%20mejorar%20eficazmente%20la%20eficiencia%20de%20la%20investigaci%C3%B3n%20y%20el%20desarrollo%20de%20nuevos%20materiales%20y%20reducir%20los%20costos%20experimentales%3F%20Mediante%20el%20m%C3%A9todo%20QSAR%2C%20los%20ingenieros%20qu%C3%ADmicos%20pueden%20convertir%20factores%20categ%C3%B3ricos%20multinivel%20en%20factores%20continuos%20y%20utilizar%20el%20an%C3%A1lisis%20de%20componentes%20principales%20para%20reducir%20el%20n%C3%BAmero%20de%20variables%2C%20reduciendo%20as%C3%AD%20el%20n%C3%BAmero%20y%20el%20costo%20de%20los%20experimentos.%20La%20combinaci%C3%B3n%20del%20dise%C3%B1o%20personalizado%20de%20JMP%20con%20el%20modelado%20PLS%20puede%20crear%20r%C3%A1pidamente%20modelos%20predictivos%20eficientes%20para%20optimizar%20la%20selecci%C3%B3n%20de%20materiales%20y%20el%20dise%C3%B1o%20de%20procesos.%20%C2%A1Aprenda%20a%20utilizar%20el%20an%C3%A1lisis%20de%20datos%20para%20mejorar%20la%20eficiencia%20de%20I%2BD%20y%20explore%20m%C3%A1s%20t%C3%A9cnicas%20de%20dise%C3%B1o%20y%20modelado%20experimental!%3C%2FP%3E%0A%3C%2FDIV%3E%0A%3C%2FDIV%3E%0A%3C%2FDIV%3E%0A%3C%2FDIV%3E%3C%2FLINGO-TEASER%3E%3CLINGO-LABS%20id%3D%22lingo-labs-842263%22%20slang%3D%22zh-TW%22%20mode%3D%22UPDATE%22%3E%3CLINGO-LABEL%3EModelado%20estad%C3%ADstico%20avanzado%3C%2FLINGO-LABEL%3E%3CLINGO-LABEL%3EDise%C3%B1o%20de%20experimentos%3C%2FLINGO-LABEL%3E%3C%2FLINGO-LABS%3E
Choose Language Hide Translation Bar
JMP_Taiwan
Level VI
如何高效提升原物料建模效率、降低實驗成本?定量構效關係 (QSAR) 性能優化 4 步驟

在材料研發與製造領域,實驗設計是評估原物料特性與製程條件的關鍵步驟。然而,傳統的實驗方法會隨著原物料種類的增加而大幅提升實驗次數,導致時間與成本的上升。此外,當新材料加入時,往往需要重新進行實驗設計,增加了研發的不確定性。為了解決這個問題,可以在實驗過程引進 QSAR (Quantitative Structure Activity Relationship) 方法,透過數據建模的方式,提高原物料篩選與分析的效率,從而降低實驗成本並提升決策準確性。

什麼是QSAR方法?QSAR 方法在原物料篩選中的應用

QSAR (定量構效關係) 是一種基於化合物的分子結構與活性之間的關聯性來建立數學模型的方法。這一概念早在 18 世紀便被提出,現已廣泛應用於藥物開發、化學與材料科學領域。傳統 QSAR 主要用於化學結構與生物活性的關聯研究,而本案例將其應用範圍擴展至物理化學性質,利用分子結構數據來提升原物料篩選與建模效率。

案例:從 45 種原料篩選至 12 種的實驗設計

某企業希望對不同原物料進行配方實驗,但由於成本考量,需要將 45 種原料縮減至 12 種。為此,團隊採用 QSAR 方法,透過 19 種分子結構特性及 2 個關鍵 Y 變量進行篩選,並設計最佳實驗方案。以下是具體的實驗步驟說明:

步驟 1:將類別型因子轉換為連續因子

由於原物料的化學特性是類別型變數,因此需要透過專業知識與數據分析經驗,將其轉換為可量化的連續變數,如(1)。例如,根據分子結構特性,提取關鍵的預測變量,使其能夠進行後續建模。

JMP_Taiwan_13-1739851519695.png

(圖1: 各材料具有相對應的分子結構數據)

 

步驟 2:使用主成分分析 (PCA) 降維與去相關

在多變數分析中,許多變數之間可能存在高度相關性 (2),影響建模準確性。因此,研究團隊利用主成分分析 (PCA) 來轉換變數,使其轉換成獨立變數,如(3),降低維度並避免共線性問題。這一過程有助於後續的建模與變數選擇。

JMP_Taiwan_14-1739851519717.png

(圖2 )相關性分析

 

JMP_Taiwan_15-1739851519720.png

JMP_Taiwan_16-1739851519722.png

(圖3) 主成分分析

步驟 3:透過 Custom Design 進行實驗設計

JMP 中,使用 Custom Design (如圖4) 功能,將經過 PCA 轉換的主成分作為共變量,設計最優化的實驗方案。透過這種方式,研究團隊成功將實驗次數控制在 12 次內,顯著降低成本與時間需求。

JMP_Taiwan_17-1739851519723.png

(圖4-1)

JMP_Taiwan_18-1739851519724.png

 (圖4-2)

JMP_Taiwan_19-1739851519727.png

(圖4-3)

步驟 4:應用 PLS 或機器學習進行建模

完成實驗設計後,使用PLS法, 根據Prob > van der Voet T2選擇6因子模型 (如圖5),或是使用Model Screening平台 (如圖6),篩選出適合的預測建模方法,另存公式到資料表上並搭配Graph下的Profiler (如圖7) 去了解X變量與Y變量間的關係。

JMP_Taiwan_20-1739851519734.png

5 PLS平台

JMP_Taiwan_21-1739851519741.png

6 Model screening平台

JMP_Taiwan_22-1739851519743.png

7 Profiler

小結

本案例證明,將數據建模技術應用於原物料篩選,能夠顯著提升研發效率,並且為未來的製程優化提供更多可能性。

透過該案例,研究人員可以將變量擴展到與製程變量一同進行實驗設計,此外,篩選材料種類時使用QSAR方法,不僅減少了實驗次數也能夠反向尋找材料,能顯著提升原物料篩選的效率,也可避免實驗成本浪費,為未來的製程優化提供更多可能性。隨著材料科學與數據分析技術的不斷進步,這種方法將成為企業提升研發決策能力的重要工具及未來產業升級的關鍵。

 

參考資料

  1. https://community.jmp.com/t5/Discovery-Summit-Europe-2017/Increase-Efficiency-and-Model-Applicabilit... 2017 演講
  2. https://community.jmp.com/t5/Learn-JMP-Events/JMP-Academic-Webinar-Teaching-Analytics-in-Chemistry-a... JMP Academic Webinar - Teaching Analytics in Chemistry and Chemical Engineering with JMP: A Hands-On Introduction Case2

更多學習資源

 

Last Modified: Feb 18, 2025 8:00 PM