Silvio Miccio, Procter & Gamble

Senior Scientist

Increase efficiency and model applicability domain when testing options that are at first glance multilevel categorical factors

 

When testing options of e.g. different raw materials or formulation ingredients, common practice is to vary them as multilevel categorical variable e.g. A, B, C…. in an experiment. Hence, for identifying the best option all of them have to be tested. A consequence of this is

  • time consuming physical testing is required and the
  • resulting model is only applicable to predict the tested options but cannot predict options that have not been tested

 

A much more efficient approach is to design the experiment based on the physical/chemical properties of each option. This,

  • significantly decreases the number of required experimental conditions and
  • results in a model that can predicted options not tested before.

 

The presentation will demonstrate how to:

  1. compress the available information describing the option properties via principal components
  2. select the “corners of the box” for testing representative raw materials based on Design of Experiments.
  3. model the data via PLS
  4. find the overall optimum solution
  5. identify physical available options closest to the calculated optimum solution
  6. Demonstrates the efficiency of this approach

Notice that what is shown here is based on a method commonly used in Chemometrics, called Quantitative Structure – Activity Relationship (QSAR).

Published on ‎03-24-2025 08:41 AM by Community Manager Community Manager | Updated on ‎03-26-2025 05:21 PM

Silvio Miccio, Procter & Gamble

Senior Scientist

Increase efficiency and model applicability domain when testing options that are at first glance multilevel categorical factors

 

When testing options of e.g. different raw materials or formulation ingredients, common practice is to vary them as multilevel categorical variable e.g. A, B, C…. in an experiment. Hence, for identifying the best option all of them have to be tested. A consequence of this is

  • time consuming physical testing is required and the
  • resulting model is only applicable to predict the tested options but cannot predict options that have not been tested

 

A much more efficient approach is to design the experiment based on the physical/chemical properties of each option. This,

  • significantly decreases the number of required experimental conditions and
  • results in a model that can predicted options not tested before.

 

The presentation will demonstrate how to:

  1. compress the available information describing the option properties via principal components
  2. select the “corners of the box” for testing representative raw materials based on Design of Experiments.
  3. model the data via PLS
  4. find the overall optimum solution
  5. identify physical available options closest to the calculated optimum solution
  6. Demonstrates the efficiency of this approach

Notice that what is shown here is based on a method commonly used in Chemometrics, called Quantitative Structure – Activity Relationship (QSAR).



Event has ended
You can no longer attend this event.

Start:
Mon, Mar 20, 2017 05:00 AM EDT
End:
Thu, Mar 23, 2017 01:00 PM EDT
0 Kudos