cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

JMP Blog

A blog for anyone curious about data visualization, design of experiments, statistics, predictive modeling, and more
%3CLINGO-SUB%20id%3D%22lingo-sub-468357%22%20slang%3D%22zh-TW%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%3E%C2%BFC%C3%B3mo%20realizar%20an%C3%A1lisis%20de%20correlaci%C3%B3n%20(An%C3%A1lisis%20de%20correlaci%C3%B3n)%20en%20JMP%3F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-468357%22%20slang%3D%22zh-TW%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%3E%3CP%3EEl%20an%C3%A1lisis%20de%20correlaci%C3%B3n%20es%20un%20m%C3%A9todo%20com%C3%BAn%20de%20an%C3%A1lisis%20estad%C3%ADstico%2C%20el%20prop%C3%B3sito%20es%20estudiar%20si%20existe%20una%20cierta%20correlaci%C3%B3n%20entre%20dos%20o%20m%C3%A1s%20variables%20%C2%BFC%C3%B3mo%20determinar%20si%20la%20correlaci%C3%B3n%20entre%20variables%20es%20positiva%20o%20negativa%3F%20%C2%BFC%C3%B3mo%20utilizar%20JMP%20para%20realizar%20an%C3%A1lisis%20relevantes%3F%20En%20el%20art%C3%ADculo%20de%20hoy%2C%20exploraremos%20el%20an%C3%A1lisis%20de%20correlaci%C3%B3n%2C%20incluida%20la%20correlaci%C3%B3n%20de%20Pearson%2C%20la%20correlaci%C3%B3n%20de%20Spearman%20y%20la%20correlaci%C3%B3n%20parcial.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CH2%20id%3D%22toc-hId-1707621951%22%20id%3D%22toc-hId-1707627685%22%20id%3D%22toc-hId-1707627685%22%20id%3D%22toc-hId-1707627685%22%20id%3D%22toc-hId-1707627685%22%20id%3D%22toc-hId-1707627685%22%3E%3CSTRONG%3E%C2%BFQu%C3%A9%20es%20el%20an%C3%A1lisis%20de%20correlaci%C3%B3n%3F%3C%2FSTRONG%3E%3CSTRONG%3E%20(An%C3%A1lisis%20de%20correlaci%C3%B3n)%3C%2FSTRONG%3E%3CSTRONG%3E%20%3F%3C%2FSTRONG%3E%3C%2FH2%3E%0A%3CP%3EPara%20comprender%20el%20an%C3%A1lisis%20de%20correlaci%C3%B3n%2C%20primero%20necesita%20conocer%20dos%20t%C3%A9rminos%3A%20coeficiente%20de%20correlaci%C3%B3n%20(r)%2C%20correlaci%C3%B3n%3C%2FP%3E%0A%3CUL%3E%0A%3CLI%3EEl%20tama%C3%B1o%20del%20coeficiente%20de%20correlaci%C3%B3n%20r%20indica%20que%20cuanto%20mayor%20sea%20r%2C%20m%C3%A1s%20fuerte%20ser%C3%A1%20la%20correlaci%C3%B3n.%3C%2FLI%3E%0A%3CLI%3ELos%20valores%20positivos%20y%20negativos%20de%20r%20son%20reflejos%2C%20los%20valores%20positivos%20representan%20una%20correlaci%C3%B3n%20positiva%20y%20los%20valores%20negativos%20representan%20una%20correlaci%C3%B3n%20negativa.%3C%2FLI%3E%0A%3C%2FUL%3E%0A%3CP%3EEl%20coeficiente%20de%20correlaci%C3%B3n%20r%20se%20refiere%20al%20coeficiente%20de%20correlaci%C3%B3n%20de%20Pearson%20y%20su%20rango%20de%20valores%20est%C3%A1%20entre%20-1%20y%201.%20r%20%3D%200%20no%20representa%20correlaci%C3%B3n%20lineal.%20De%20hecho%2C%20adem%C3%A1s%20de%20la%20correlaci%C3%B3n%20lineal%2C%20tambi%C3%A9n%20existe%20una%20gran%20cantidad%20de%20correlaciones%20no%20lineales%2C%20como%20como%20correlaci%C3%B3n%20logar%C3%ADtmica%2C%20correlaci%C3%B3n%20parab%C3%B3lica%2C%20etc.%20Generalmente%2C%20%7Cr%7C%26gt%3B0%2C7%20se%20considera%20una%20correlaci%C3%B3n%20alta%3B%200%2C5-0%2C7%20es%20una%20correlaci%C3%B3n%20media%3B%200%2C3-0%2C5%20es%20una%20correlaci%C3%B3n%20d%C3%A9bil.%20Sin%20embargo%2C%20no%20existe%20una%20clasificaci%C3%B3n%20obligatoria%20de%20los%20niveles%20de%20correlaci%C3%B3n.%20Los%20diferentes%20campos%20tienen%20su%20propio%20%C3%A9nfasis.%20Por%20ejemplo%2C%20Los%20fen%C3%B3menos%20sociol%C3%B3gicos%20pueden%20llegar%20a%200%2C7%2C%20hay%20muy%20pocos%20y%20hay%20muchos%20indicadores%20de%20laboratorio%20m%C3%A9dico%20que%20superan%200%2C9.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3COL%3E%0A%3CLI%3E%3CSTRONG%3EPrimero%20dibuje%20un%20diagrama%20de%20dispersi%C3%B3n%20para%20determinar%20si%20existe%20una%20correlaci%C3%B3n%20lineal.%3C%2FSTRONG%3E%3C%2FLI%3E%0A%3C%2FOL%3E%0A%3CP%3EPor%20lo%20tanto%2C%20antes%20de%20realizar%20un%20an%C3%A1lisis%20de%20correlaci%C3%B3n%2C%20es%20mejor%20dibujar%20un%20diagrama%20de%20dispersi%C3%B3n%20para%20explorar%20inicialmente%20la%20correlaci%C3%B3n%20de%20los%20datos.%20Solo%20cuando%20los%20datos%20muestren%20una%20correlaci%C3%B3n%20lineal%2C%20se%20considerar%C3%A1%20el%20coeficiente%20de%20correlaci%C3%B3n%20de%20Pearson.%20Si%20el%20diagrama%20de%20dispersi%C3%B3n%20muestra%20que%20puede%20haber%20una%20relaci%C3%B3n%20no%20lineal%20entre%20dos%20variables%2C%20puede%20considerar%20la%20transformaci%C3%B3n%20variable%20de%20una%20de%20las%20variables%20y%20luego%20calcular%20el%20coeficiente%20de%20correlaci%C3%B3n.%3C%2FP%3E%0A%3COL%20start%3D%222%22%3E%0A%3CLI%3E%3CSTRONG%3EAlta%20correlaci%C3%B3n%20no%20significa%20causalidad%3C%2FSTRONG%3E%3C%2FLI%3E%0A%3C%2FOL%3E%0A%3CP%3EAdem%C3%A1s%2C%20cabe%20se%C3%B1alar%20que%20correlaci%C3%B3n%20no%20significa%20causalidad.%20Por%20ejemplo%2C%20el%20n%C3%BAmero%20de%20muertes%20nadando%20est%C3%A1%20correlacionado%20positivamente%20con%20las%20ventas%20de%20sorbetes.%20No%20podemos%20inferir%20que%20comer%20sorbete%20aumentar%C3%A1%20el%20riesgo%20de%20muertes%20nadando.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3ELas%20variables%20A%20y%20B%20est%C3%A1n%20correlacionadas.%20Adem%C3%A1s%20de%20la%20relaci%C3%B3n%20causal%20entre%20A%20y%20B%2C%20otra%20raz%C3%B3n%20puede%20ser%20que%20otra%20variable%20C%20afecte%20a%20A%20y%20B%20al%20mismo%20tiempo%2C%20lo%20que%20hace%20que%20A%20y%20B%20muestren%20una%20correlaci%C3%B3n%20falsa%20en%20la%20superficie.%20Por%20ejemplo%2C%20en%20el%20ejemplo%20de%20las%20ventas%20de%20sorbetes%20y%20el%20riesgo%20de%20muertes%20por%20nataci%C3%B3n%2C%20el%20clima%20c%C3%A1lido%20es%20la%20variable%20C%2C%20lo%20que%20conduce%20simult%C3%A1neamente%20a%20un%20aumento%20de%20las%20muertes%20por%20nataci%C3%B3n%20y%20de%20las%20ventas%20de%20sorbetes.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CH2%20id%3D%22toc-hId--844535010%22%20id%3D%22toc-hId--844529276%22%20id%3D%22toc-hId--844529276%22%20id%3D%22toc-hId--844529276%22%20id%3D%22toc-hId--844529276%22%20id%3D%22toc-hId--844529276%22%3E%3CSTRONG%3Epearson%3C%2FSTRONG%3E%3CSTRONG%3E%20relacionado%2C%3C%2FSTRONG%3E%3CSTRONG%3E%20Lancero%3C%2FSTRONG%3E%3CSTRONG%3E%20Correlaci%C3%B3n%20y%20correlaci%C3%B3n%20parcial.%3C%2FSTRONG%3E%3C%2FH2%3E%0A%3CUL%3E%0A%3CLI%3ECuando%20dos%20variables%20presentan%20una%20distribuci%C3%B3n%20normal%2C%20la%20correlaci%C3%B3n%20suele%20medirse%20mediante%20el%20coeficiente%20de%20correlaci%C3%B3n%20de%20Pearson.%3C%2FLI%3E%0A%3CLI%3ESi%20hay%20variables%20que%20no%20se%20ajustan%20a%20la%20distribuci%C3%B3n%20normal%2C%20se%20suele%20utilizar%20el%20coeficiente%20de%20correlaci%C3%B3n%20de%20Spearman%20para%20medir%20la%20correlaci%C3%B3n.%3C%2FLI%3E%0A%3CLI%3ESi%20desea%20conocer%20la%20magnitud%20del%20coeficiente%20de%20correlaci%C3%B3n%20entre%20dos%20variables%20despu%C3%A9s%20de%20controlar%20otras%20variables%2C%20puede%20calcular%20el%20coeficiente%20de%20correlaci%C3%B3n%20parcial%2C%20como%20la%20correlaci%C3%B3n%20entre%20el%20peso%20y%20la%20presi%C3%B3n%20arterial%20despu%C3%A9s%20de%20controlar%20la%20influencia%20de%20la%20edad.%3C%2FLI%3E%0A%3C%2FUL%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3ESeg%C3%BAn%20los%20datos%20de%20la%20(Figura%201)%2C%20explore%20la%20correlaci%C3%B3n%20entre%20el%20IMC%20y%20la%20puntuaci%C3%B3n%20de%20salud%20f%C3%ADsica%2C%20as%C3%AD%20como%20el%20coeficiente%20de%20correlaci%C3%B3n%20parcial%20entre%20el%20IMC%20y%20la%20puntuaci%C3%B3n%20de%20salud%20f%C3%ADsica%20despu%C3%A9s%20de%20ajustar%20por%20edad.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_0-1646907172358.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_0-1646907172358.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_0-1646907172358.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_0-1646907172358.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_0-1646907172358.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_0-1646907172358.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F40681i2794AACB73FF8D79%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_0-1646907172358.png%22%20alt%3D%22Michelle_Wu_0-1646907172358.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EFigura%201%20Datos%20de%20muestra%3C%2FP%3E%0A%3CH2%20id%3D%22toc-hId-898275325%22%20id%3D%22toc-hId-898281059%22%20id%3D%22toc-hId-898281059%22%20id%3D%22toc-hId-898281059%22%20id%3D%22toc-hId-898281059%22%20id%3D%22toc-hId-898281059%22%3E%26nbsp%3B%3C%2FH2%3E%0A%3CH2%20id%3D%22toc-hId--1653881636%22%20id%3D%22toc-hId--1653875902%22%20id%3D%22toc-hId--1653875902%22%20id%3D%22toc-hId--1653875902%22%20id%3D%22toc-hId--1653875902%22%20id%3D%22toc-hId--1653875902%22%3E%3CSTRONG%3Ec%C3%B3mo%3C%2FSTRONG%3E%3CSTRONG%3E%20JMP%3C%2FSTRONG%3E%3CSTRONG%3E%20Operaci%C3%B3n%20media%3C%2FSTRONG%3E%3CSTRONG%3E%20pearson%3C%2FSTRONG%3E%3CSTRONG%3E%20relacionado%20con%3C%2FSTRONG%3E%3CSTRONG%3E%20Lancero%3C%2FSTRONG%3E%3CSTRONG%3E%20Relacionado%3C%2FSTRONG%3E%3C%2FH2%3E%0A%3CP%3ETanto%20la%20correlaci%C3%B3n%20de%20Pearson%20como%20la%20correlaci%C3%B3n%20de%20Spearman%20se%20pueden%20realizar%20a%20trav%C3%A9s%20del%20men%C3%BA%20JMP%20%22An%C3%A1lisis%22%20%E2%86%92%20%22M%C3%BAltiples%20m%C3%A9todos%22%20%E2%86%92%20%22M%C3%BAltiples%22%2C%20como%20se%20muestra%20en%20la%20Figura%202.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_1-1646907172362.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_1-1646907172362.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_1-1646907172362.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_1-1646907172362.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_1-1646907172362.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_1-1646907172362.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F40680i3F4D1F3347CF2A77%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_1-1646907172362.png%22%20alt%3D%22Michelle_Wu_1-1646907172362.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EFigura%202%20Operaciones%20de%20an%C3%A1lisis%20relacionadas%3A%20selecci%C3%B3n%20de%20men%C3%BA%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EEn%20la%20interfaz%20%22M%C3%BAltiple%20y%20Correlaci%C3%B3n%22%2C%20coloque%20el%20IMC%20y%20la%20puntuaci%C3%B3n%20de%20salud%20f%C3%ADsica%20en%20la%20columna%20%22Y%22%20(Figura%203).%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_2-1646907172366.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_2-1646907172366.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_2-1646907172366.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_2-1646907172366.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_2-1646907172366.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_2-1646907172366.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F40679iA1BE5F738A1865F1%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_2-1646907172366.png%22%20alt%3D%22Michelle_Wu_2-1646907172366.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3EFigura%203%20Operaciones%20de%20an%C3%A1lisis%20relacionadas%3A%20selecci%C3%B3n%20de%20variables%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3ELos%20resultados%20predeterminados%20generan%20la%20matriz%20del%20coeficiente%20de%20correlaci%C3%B3n%20de%20Pearson%20(Figura%204)%20y%20la%20matriz%20del%20diagrama%20de%20dispersi%C3%B3n%20(Figura%205).%20Se%20puede%20ver%20que%20el%20coeficiente%20de%20correlaci%C3%B3n%20de%20Pearson%20de%20las%20dos%20variables%20es%200%2C1479.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_3-1646907172369.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_3-1646907172369.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_3-1646907172369.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_3-1646907172369.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_3-1646907172369.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_3-1646907172369.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F40683i9394506228999624%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_3-1646907172369.png%22%20alt%3D%22Michelle_Wu_3-1646907172369.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3EFigura%204%20Operaci%C3%B3n%20de%20an%C3%A1lisis%20de%20correlaci%C3%B3n%3A%20matriz%20de%20coeficientes%20de%20correlaci%C3%B3n%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_4-1646907172372.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_4-1646907172372.png%22%20style%3D%22width%3A%20398px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_4-1646907172372.png%22%20style%3D%22width%3A%20398px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_4-1646907172372.png%22%20style%3D%22width%3A%20398px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_4-1646907172372.png%22%20style%3D%22width%3A%20398px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_4-1646907172372.png%22%20style%3D%22width%3A%20398px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F40682i6CB4DF280F4B482B%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_4-1646907172372.png%22%20alt%3D%22Michelle_Wu_4-1646907172372.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3EFigura%205%20Operaciones%20de%20an%C3%A1lisis%20relacionadas%3A%20matriz%20de%20diagrama%20de%20dispersi%C3%B3n%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%26gt%3B%26gt%3B%3CA%20href%3D%22https%3A%2F%2Fwww.jmp.com%2Fzh_tw%2Fapplications%2Fstatistics-predictive-modeling-data-mining.html%22%20target%3D%22_blank%22%20rel%3D%22noopener%20noreferrer%22%3E%20Utilice%20JMP%20para%20estad%C3%ADsticas%2C%20modelado%20predictivo%20y%20exploraci%C3%B3n%20de%20datos%3C%2FA%3E%20%26lt%3B%26lt%3B%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EDado%20que%20tanto%20el%20IMC%20como%20las%20puntuaciones%20de%20salud%20f%C3%ADsica%20no%20se%20ajustan%20a%20la%20distribuci%C3%B3n%20normal%2C%20es%20necesario%20generar%20el%20coeficiente%20de%20correlaci%C3%B3n%20de%20Spearman.%20Puede%20hacer%20clic%20en%20%22Correlaci%C3%B3n%20no%20param%C3%A9trica%20%E2%86%92%20Spearman%20%CF%81%22%20(Figura%206).%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_5-1646907172374.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_5-1646907172374.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_5-1646907172374.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_5-1646907172374.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_5-1646907172374.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_5-1646907172374.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F40684iFCC0788DBA836252%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_5-1646907172374.png%22%20alt%3D%22Michelle_Wu_5-1646907172374.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3EFigura%206%20Operaci%C3%B3n%20de%20correlaci%C3%B3n%20no%20param%C3%A9trica%20%E2%80%93%20operaci%C3%B3n%20de%20men%C3%BA%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3ELos%20resultados%20se%20muestran%20en%20la%20Figura%207%20y%20el%20coeficiente%20de%20correlaci%C3%B3n%20de%20Spearman%20es%200%2C1739.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_6-1646907172378.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_6-1646907172378.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_6-1646907172378.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_6-1646907172378.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_6-1646907172378.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_6-1646907172378.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F40685i382BB654DF26546B%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_6-1646907172378.png%22%20alt%3D%22Michelle_Wu_6-1646907172378.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3EFigura%207%20Operaci%C3%B3n%20de%20correlaci%C3%B3n%20no%20param%C3%A9trica%3A%20salida%20de%20resultados%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3ESi%20desea%20mostrar%20otros%20resultados%2C%20puede%20hacer%20clic%20en%20el%20bot%C3%B3n%20del%20tri%C3%A1ngulo%20rojo%20en%20el%20lado%20izquierdo%20de%20%22M%C3%BAltiple%22%20para%20generar%20(Figura%206).%20Si%20desea%20generar%20el%20valor%20P%20correspondiente%2C%20puede%20hacer%20clic%20en%20la%20probabilidad%20de%20correlaci%C3%B3n%3B%20si%20Si%20desea%20generar%20el%20intervalo%20de%20confianza%20del%20coeficiente%20de%20correlaci%C3%B3n%2C%20puede%20hacer%20clic%20en%20la%20correlaci%C3%B3n%20Intervalo%20de%20confianza.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CH2%20id%3D%22toc-hId-88928699%22%20id%3D%22toc-hId-88934433%22%20id%3D%22toc-hId-88934433%22%20id%3D%22toc-hId-88934433%22%20id%3D%22toc-hId-88934433%22%20id%3D%22toc-hId-88934433%22%3E%3CSTRONG%3Ecorrelaci%C3%B3n%20parcial%20multivariada%3C%2FSTRONG%3E%3C%2FH2%3E%0A%3CP%3EDespu%C3%A9s%20de%20comprender%20la%20correlaci%C3%B3n%20entre%20el%20IMC%20y%20las%20puntuaciones%20de%20salud%20f%C3%ADsica%2C%20tambi%C3%A9n%20quisimos%20explorar%20el%20coeficiente%20de%20correlaci%C3%B3n%20parcial%20entre%20el%20IMC%20y%20las%20puntuaciones%20de%20salud%20f%C3%ADsica%20despu%C3%A9s%20de%20ajustar%20por%20edad.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3ELa%20correlaci%C3%B3n%20parcial%20tambi%C3%A9n%20se%20logra%20a%20trav%C3%A9s%20del%20men%C3%BA%20JMP%20%22An%C3%A1lisis%22%20%E2%86%92%20%22M%C3%A9todos%20multivariados%22%20%E2%86%92%20%22M%C3%BAltiples%22.%20Al%20mismo%20tiempo%2C%20arrastre%20las%20tres%20variables%20de%20edad%2C%20IMC%20y%20puntuaci%C3%B3n%20de%20salud%20f%C3%ADsica%20a%20la%20columna%20%22Y%22%20en%20la%20Figura%202.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EEn%20la%20interfaz%20de%20resultados%2C%20haga%20clic%20en%20el%20bot%C3%B3n%20del%20tri%C3%A1ngulo%20rojo%20a%20la%20izquierda%20de%20%22Multivariado%22%20y%20haga%20clic%20en%20%22Correlaci%C3%B3n%20parcial%22%20y%20%22Probabilidad%20de%20correlaci%C3%B3n%20parcial%22%20en%20el%20men%C3%BA%20desplegable%20(Figura%208)%3C%2Fimg%3E%20para%20generar%20el%20coeficiente%20de%20correlaci%C3%B3n%20parcial%20y%20su%20valor%20P.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_7-1646907172379.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_7-1646907172379.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_7-1646907172379.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_7-1646907172379.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_7-1646907172379.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_7-1646907172379.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F40686i96809343D85EF364%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_7-1646907172379.png%22%20alt%3D%22Michelle_Wu_7-1646907172379.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3EFigura%208%20Operaci%C3%B3n%20de%20correlaci%C3%B3n%20parcial%3A%20selecci%C3%B3n%20de%20men%C3%BA%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3ELos%20resultados%20de%20salida%20se%20muestran%20en%20la%20Figura%209.%20Despu%C3%A9s%20de%20corregir%20por%20la%20influencia%20de%20la%20edad%2C%20la%20correlaci%C3%B3n%20entre%20el%20IMC%20y%20la%20puntuaci%C3%B3n%20de%20salud%20f%C3%ADsica%20aument%C3%B3%20ligeramente%2C%20de%200%2C1479%20a%200%2C1940%2C%20lo%20que%20indica%20que%3CSTRONG%3E%20La%20edad%20tiene%20cierta%20influencia%20en%20la%20relaci%C3%B3n%20entre%20estas%20dos%20variables%2C%20pero%20la%20influencia%20es%20limitada%3C%2FSTRONG%3E%20.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_8-1646907172382.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_8-1646907172382.png%22%20style%3D%22width%3A%20359px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_8-1646907172382.png%22%20style%3D%22width%3A%20359px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_8-1646907172382.png%22%20style%3D%22width%3A%20359px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_8-1646907172382.png%22%20style%3D%22width%3A%20359px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_8-1646907172382.png%22%20style%3D%22width%3A%20359px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F40687iEE2F87EE01522CE9%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_8-1646907172382.png%22%20alt%3D%22Michelle_Wu_8-1646907172382.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3EFigura%209%20Operaci%C3%B3n%20de%20correlaci%C3%B3n%20parcial%3A%20salida%20de%20resultados%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3ELo%20anterior%20es%20una%20introducci%C3%B3n%20al%20an%C3%A1lisis%20relacionado.%20Bienvenido%20a%20probar%20JMP%20gratis%20para%20comenzar%20su%20primer%20an%C3%A1lisis.%3C%2FP%3E%0A%3CP%3E%3CA%20href%3D%22https%3A%2F%2Fwww.jmp.com%2Fzh_tw%2Fdownload-jmp-free-trial.html%22%20target%3D%22_blank%22%20rel%3D%22noopener%20noreferrer%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_9-1646907172388.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_9-1646907172388.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_9-1646907172388.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_9-1646907172388.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_9-1646907172388.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_9-1646907172388.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F40688i6F6A7462B8FE4C79%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_9-1646907172388.png%22%20alt%3D%22Michelle_Wu_9-1646907172388.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FA%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%3CSTRONG%3E%3CFONT%20size%3D%224%22%3E%26gt%3B%26gt%3B%3CA%20href%3D%22https%3A%2F%2Fwww.jmp.com%2Fzh_tw%2Fstatistics-knowledge-portal.html%22%20target%3D%22_blank%22%20rel%3D%22noopener%20noreferrer%22%3E%20Aprende%20estad%C3%ADsticas%20f%C3%A1cilmente%3C%2FA%3E%20%26lt%3B%26lt%3B%3C%2FFONT%3E%3C%2FSTRONG%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3ELectura%20recomendada%3A%3C%2FP%3E%0A%3CP%3E%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2FJMP-Blog%2F%25E5%259C%25A8JMP%25E4%25B8%25AD%25E9%2580%25B2%25E8%25A1%258C%25E5%25B8%25B8%25E6%2585%258B%25E6%25AA%25A2%25E5%25AE%259A%25E8%2588%2587%25E8%25AE%258A%25E7%2595%25B0%25E6%2595%25B8%25E5%2590%258C%25E8%25B3%25AA%25E6%2580%25A7%25E6%25AA%25A2%25E5%25AE%259A%2Fba-p%2F417947%3FtrMode%3Dsource%22%20target%3D%22_blank%22%3ERealizar%20prueba%20de%20normalidad%20y%20prueba%20de%20homogeneidad%20del%20n%C3%BAmero%20de%20variaci%C3%B3n%20en%20JMP%3C%2FA%3E%3C%2FP%3E%0A%3CP%3E%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2FJMP-Blog%2F%25E8%25AE%258A%25E7%2595%25B0%25E6%2595%25B8%25E5%2588%2586%25E6%259E%2590-ANOVA-%25E8%2588%2587%25E5%2585%25A9%25E5%2585%25A9%25E6%25AF%2594%25E8%25BC%2583%25E7%259A%2584%25E6%2580%259D%25E8%2580%2583%25E8%2584%2588%25E7%25B5%25A1%25E8%2588%2587%25E5%2588%2586%25E6%259E%2590%25E6%2596%25B9%25E6%25B3%2595%2Fba-p%2F421202%3FtrMode%3Dsource%22%20target%3D%22_blank%22%3EAn%C3%A1lisis%20de%20variaci%C3%B3n%20(ANOVA)%20y%20m%C3%A9todos%20de%20an%C3%A1lisis%20y%20pensamiento%20de%20comparaci%C3%B3n%20por%20pares.%3C%2FA%3E%3C%2FP%3E%0A%3CP%3E%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2FJMP-Blog%2F%25E8%25AA%258D%25E8%25AD%2598%25E5%258D%25A1%25E6%2596%25B9%25E6%25AA%25A2%25E5%25AE%259A-%25E5%2588%2586%25E9%25A1%259E%25E8%25B3%2587%25E6%2596%2599%25E7%25B5%2584%25E9%2596%2593%25E6%25AF%2594%25E8%25BC%2583%25E7%259A%2584%25E5%2588%2586%25E6%259E%2590%25E7%25A5%259E%25E5%2599%25A8%2Fba-p%2F444022%3FtrMode%3Dsource%22%20target%3D%22_blank%22%3EComprender%20la%20prueba%20de%20chi-cuadrado%3A%20una%20herramienta%20anal%C3%ADtica%20para%20comparar%20entre%20grupos%20de%20datos%20categ%C3%B3ricos%3C%2FA%3E%3C%2FP%3E%0A%3CP%3E%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2FJMP-Blog%2F%25E5%258D%25A1%25E6%2596%25B9%25E6%25AA%25A2%25E5%25AE%259A%25E7%259A%2584%25E5%25BB%25B6%25E4%25BC%25B8-%25E7%25AD%2589%25E7%25B4%259A%25E8%25B3%2587%25E6%2596%2599%25E7%25A7%25A9%25E5%2592%258C%25E6%25AA%25A2%25E5%25AE%259A-%25E8%25B6%25A8%25E5%258B%25A2%25E5%258D%25A1%25E6%2596%25B9%25E5%2592%258C%25E9%2585%258D%25E5%25B0%258D%25E5%258D%25A1%25E6%2596%25B9%2Fba-p%2F444038%3FtrMode%3Dsource%22%20target%3D%22_blank%22%3EExtensiones%20de%20la%20prueba%20de%20chi-cuadrado%3A%20prueba%20de%20suma%20de%20rangos%20de%20datos%20de%20clasificaci%C3%B3n%2C%20chi-cuadrado%20de%20tendencia%20y%20chi-cuadrado%20emparejado%3C%2FA%3E%3C%2FP%3E%0A%3CP%3E%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2FJMP-Blog%2F%25E5%25AF%25A6%25E9%25A9%2597%25E8%25A8%25AD%25E8%25A8%2588-DOE-%25E5%2585%25A5%25E9%2596%2580-%25E7%25B6%2593%25E5%2585%25B8%25E7%25AF%25A9%25E9%2581%25B8%25E8%25A8%25AD%25E8%25A8%2588%25E8%2588%2587%25E5%2585%25A8%25E5%259B%25A0%25E5%25AD%2590%25E8%25A8%25AD%25E8%25A8%2588%2Fba-p%2F423195%3FtrMode%3Dsource%22%20target%3D%22_blank%22%3EIntroducci%C3%B3n%20al%20dise%C3%B1o%20de%20experimentos%20(DOE)%3A%20dise%C3%B1o%20de%20cribado%20cl%C3%A1sico%20y%20dise%C3%B1o%20factorial%20completo%3C%2FA%3E%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-TEASER%20id%3D%22lingo-teaser-468357%22%20slang%3D%22zh-TW%22%3E%3CP%3EEl%20an%C3%A1lisis%20de%20correlaci%C3%B3n%20es%20un%20m%C3%A9todo%20com%C3%BAn%20de%20an%C3%A1lisis%20estad%C3%ADstico%2C%20el%20prop%C3%B3sito%20es%20estudiar%20si%20existe%20una%20cierta%20correlaci%C3%B3n%20entre%20dos%20o%20m%C3%A1s%20variables%20%C2%BFC%C3%B3mo%20juzgar%20si%20la%20correlaci%C3%B3n%20entre%20variables%20es%20positiva%20o%20negativa%3F%20%C2%BFC%C3%B3mo%20utilizar%20JMP%20para%20realizar%20an%C3%A1lisis%20relevantes%3F%20En%20el%20art%C3%ADculo%20de%20hoy%2C%20exploraremos%20el%20an%C3%A1lisis%20de%20correlaci%C3%B3n%2C%20incluida%20la%20correlaci%C3%B3n%20de%20Pearson%2C%20la%20correlaci%C3%B3n%20de%20Spearman%20y%20la%20correlaci%C3%B3n%20parcial.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%3C%2FLINGO-TEASER%3E
Choose Language Hide Translation Bar
JMP_Taiwan
Level VI
如何在JMP中進行相關分析(Correlation Analysis) ?

相關分析,是常見的統計分析方法,目的是在研究兩個或多個變量之間是否存在某種相關性,該如何判斷變量之間的相關性為正還是負?如何使用JMP中進行相關分析?今天的文章我們就來一起探索相關分析,包含Pearson相關、Spearman相關以及偏相關。

 

什麼是相關分析 (correlation analysis)

要認識相關分析,首先需要知道2個名詞 – 相關係數(r)、相關性

  • 相關係數r的大小表示,r愈大說明相關性愈強。
  • r的正負值則是反映,正值表示正相關,負值表示負相關。

相關係數r是指Pearson相關係數,其數值範圍為-1~1之間,r=0代表無線性相關,實際上除了線性相關,還存在大量的非線性相關,如對數相關、拋物線相關等。一般|r|>0.7認爲相關性高;0.5-0.7爲中等相關;0.3-0.5爲弱相關,不過相關性高低並沒有強制的分法,不同領域各有側重,例如社會學現象能達到0.7的非常少,而醫學實驗室指標達到0.9以上的比比皆是。

 

  1. 先繪製散佈圖確定是否為線性相關

所以在進行相關分析前,最好先繪製散佈圖 (scatter plot),初步探索數據的相關性,只有數據呈現線性相關時,才考慮用Pearson相關係數。如果散佈圖顯示兩個變量之間可能是非線性關係,可以考慮對其中某一變量進行變量變換,然後再計算相關係數。

  1. 相關性高不代表有因果關係

此外,需要注意的是:相關不代表因果關係,例如游泳死亡人數與冰糕銷售量呈現正相關,我們不能推斷吃冰糕會增加游泳死亡風險。

 

變量A和B具有相關性,除了A和B具有因果關係外,另一個原因可能是有另一變量C同時對A和B産生影響,導致A和B呈現出表面上的虛假相關。比如冰糕銷售量與游泳死亡風險的例子中,天氣炎熱就是變量C,同時導致了游泳死亡人數和冰糕銷售量的上升。

 

Pearson相關、Spearman相關以及偏相關

  • 當兩個變量呈現正態分布時,通常用Pearson相關係數度量相關性。
  • 如果有變量不符合正態分布時,通常用Spearman相關係數度量相關性。
  • 如果想瞭解在控制其它變量後,兩個變量之間的相關係數大小,可以計算偏相關係數,例如控制年齡的影響後體重與血壓之間的相關關係。

 

根據 (圖1) 資料,探索BMI與軀體健康評分的相關性,以及校正年齡後BMI與軀體健康評分之間的偏相關係數。

 

Michelle_Wu_0-1646907172358.png

 

圖1 示例數據

 

如何在JMP中操作Pearson相關與Spearman相關

Pearson相關和Spearman相關均可通過JMP菜單「分析」→「多元方法」→「多元」來實現,如圖2。

 

Michelle_Wu_1-1646907172362.png

 

圖2 相關分析操作——菜單選擇

 

在「多元與相關性」界面中,將BMI與軀體健康評分放到「Y,列」(圖3)。

 

Michelle_Wu_2-1646907172366.png

圖3 相關分析操作——變量選擇

 

默認結果輸出Pearson相關係數矩陣(圖4)和散佈圖矩陣(圖5),可以看出兩個變量的Pearson相關係數爲0.1479。

 

Michelle_Wu_3-1646907172369.png

圖4 相關分析操作——相關係數矩陣

 

Michelle_Wu_4-1646907172372.png

圖5 相關分析操作——散點圖矩陣

 

>> 使用 JMP進行統計、預測建模以及資料探勘 <<

 

由於BMI與軀體健康評分均不符合常態分布,因此需要輸出Spearman相關係數,可點擊「非參數相關性→Spearman ρ」(圖6)。

 

Michelle_Wu_5-1646907172374.png

圖6非參數相關性操作 –選單操作

 

結果如圖7所示,Spearman 相關係數爲0.1739。

 

Michelle_Wu_6-1646907172378.png

圖7非參數相關性操作——結果輸出

 

想顯示其它結果均可通過點擊「多元」左側的紅色三角形按鈕來輸出(圖6),如想輸出相應的P值,可點擊相關性概率;想輸出相關係數的置信區間,可點擊相關性置信區間。

 

多變量的偏相關

在瞭解了BMI與軀體健康評分的相關性後,我們還想探索在校正年齡後BMI與軀體健康評分之間的偏相關係數。

 

偏相關也是通過JMP 菜單「分析」→「多元方法」→「多元」來實現。同時將年齡、BMI與軀體健康評分三個變量拖入圖2中的「Y,列」。

 

在結果界面中,點擊「多元」左側的紅色三角形按鈕,在下拉菜單中點擊「偏相關性」和「偏相關性概率」(圖8),即可輸出偏相關係數及其P值。

 

Michelle_Wu_7-1646907172379.png

圖8 偏相關操作——菜單選擇

 

輸出結果見圖9,校正年齡的影響後,BMI和軀體健康評分之間的相關性略有提高,從0.1479提升到0.1940,說明年齡對這兩個變量之間的關係具有一定影響,但影響有限

 

Michelle_Wu_8-1646907172382.png

圖9 偏相關操作——結果輸出

 

以上就是針對相關分析的介紹,歡迎免費試用JMP開始你的第一個分析。

Michelle_Wu_9-1646907172388.png

 

>> 輕鬆學統計知識 <<

 

推薦閱讀:

在JMP中進行常態檢定與變異數同質性檢定

變異數分析 (ANOVA) 與兩兩比較的思考脈絡與分析方法

認識卡方檢定:分類資料組間比較的分析神器

卡方檢定的延伸:等級資料秩和檢定、趨勢卡方和配對卡方

實驗設計 (DOE)入門:經典篩選設計與全因子設計

Last Modified: Mar 11, 2022 10:17 AM