turn on suggestions

Auto-suggest helps you quickly narrow down your search results by suggesting possible matches as you type.

Showing results for

- JMP User Community
- :
- Discussions
- :
- Discussions
- :
- unique variance for each variable in multiple regr...

Topic Options

- Subscribe to RSS Feed
- Mark Topic as New
- Mark Topic as Read
- Float this Topic for Current User
- Bookmark
- Subscribe
- Printer Friendly Page

- Mark as New
- Bookmark
- Subscribe
- Subscribe to RSS Feed
- Permalink
- Email to a Friend
- Report Inappropriate Content

Oct 7, 2016 8:00 AM
(2858 views)

In the attached dataset and screenshot, I am trying to find the effect of prior academic achievement and SES on current achievement for students. How could I find the unique variance/semipartial correlation for each variance? I know it is not the square of standard beta for the variable. Any ideas? Thank you!

Solved! Go to Solution.

1 ACCEPTED SOLUTION

Accepted Solutions

- Mark as New
- Bookmark
- Subscribe
- Subscribe to RSS Feed
- Permalink
- Email to a Friend
- Report Inappropriate Content

Oct 10, 2016 5:30 PM
(5400 views)

Solution

JMP doesn't report semipartial correlations directly, but they can be calculated from regressions.

For example, to get the semipartial correlation for socioeconomic status, first, run two regressions as shown in the screenshots.

Then take the sqrt of the difference in RSquare values between the two models, i..e. sqrt(0.723934-0.715378)=0.0925. This indicates the "unique" contribution of socioeconomic status as a predictor.

1 REPLY

- Mark as New
- Bookmark
- Subscribe
- Subscribe to RSS Feed
- Permalink
- Email to a Friend
- Report Inappropriate Content

Oct 10, 2016 5:30 PM
(5401 views)

JMP doesn't report semipartial correlations directly, but they can be calculated from regressions.

For example, to get the semipartial correlation for socioeconomic status, first, run two regressions as shown in the screenshots.

Then take the sqrt of the difference in RSquare values between the two models, i..e. sqrt(0.723934-0.715378)=0.0925. This indicates the "unique" contribution of socioeconomic status as a predictor.