Adding to @statmans helpful suggestions,
I like the variability plot,
and also like to look at random data (where no effect should be found).
The script below will generate that data.
And follow the path from simple analysis (e.g. distribution and also fit y by x) to complex (mixed model analysis).
Names Default To Here( 1 );
// Generate a data table with random data
doe_obj = DOE(
Full Factorial Design,
{Add Response( Maximize, "size", ., ., . ), Add Factor( Categorical, {"m", "f"}, "sex", 0 ), Add Factor(
Categorical,
{"north", "center", "south"},
"latitude",
0
), Add Factor( Categorical, {"low", "high"}, "altitude", 0 ), Set Random Seed( 35445577 ), Make Design, Replicates( 10 ), Simulate Responses( 0 ),
Set Run Order( Randomize )}
);
dt = doe_obj << Make Table;
doe_obj << close window;
// generate random response
dt:size << set Formula( Random Normal() );
// Variability chart
dt << Variability Chart( Y( :size ), X( :sex, :latitude, :altitude ) )
Georg