cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

Discussions

Solve problems, and share tips and tricks with other JMP users.
%3CLINGO-SUB%20id%3D%22lingo-sub-707635%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3ERegression%20der%20kleinsten%20Quadrate%20f%C3%BCr%20nichtlineare%20Gleichungssysteme%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-707635%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EHallo%2C%20ich%20habe%20ein%20m%C3%A4%C3%9Fig%20komplexes%20Modell%20f%C3%BCr%20einen%20physikalischen%20Prozess%20(Ionenadsorption%20f%C3%BCr%20jeden%2C%20der%20wei%C3%9F%2C%20was%20das%20bedeutet).%20Ich%20habe%20zwei%20Startvariablen%2C%20x1%20und%20x2%2C%20und%20zwei%20gemessene%20Ergebnisse%2C%20y1%20und%20y2%2C%20die%20sich%20mit%20x1%20und%20x2%20%C3%A4ndern%2C%20und%20nicht%20messbare%20oder%20schwer%20zu%20messende%20Variablen%2C%20g1%2C...%2Cgn%2C%20die%20sich%20nicht%20%C3%A4ndern.%20Eines%20oder%20beide%20von%20x1%20und%20x2%20k%C3%B6nnen%20sich%20auch%20f%C3%BCr%20jede%20Zeile%20in%20einer%20Reihe%20%C3%A4ndern.%20Ich%20habe%20einen%20Satz%20nichtlinearer%20Gleichungen%2C%20s%20%3D%20f(x1%2C%20x2%2C%20y1%2C...%2Cy2%2C%20g1%2C...%2Cgn)%2C%20sowie%20einige%20andere%20Funktionen%20verschiedener%20Variablen%20in%20f%2C%20je%20nachdem%2C%20wie%20komplex%20I%20ist%20m%C3%B6chte%2C%20dass%20das%20Modell%20ist.%20Beispielgleichungen%20finden%20Sie%20im%20Anhang.%3CBR%20%2F%3E%3CBR%20%2F%3E%20Typischerweise%20machen%20wir%20das%20in%20Matlab%20mit%20lsqnonlin.%20Funktioniert%20gut%2C%20aber%20es%20ist%20schwierig%2C%20es%20zum%20Laufen%20zu%20bringen.%20Ich%20h%C3%A4tte%20viel%20lieber%20eine%20(nicht%20so%20einfache)%20Spaltenformel.%20Allerdings%20bin%20ich%20mir%20nicht%20ganz%20sicher%2C%20wie%20ich%20es%20codieren%20soll.%20Die%20Sache%20mit%20der%20nichtlinearen%20Regression%20ist%20f%C3%BCr%20einzelne%20Gleichungen%20konzipiert%2C%20und%20mit%20den%20drei%20Gleichungen%2C%20die%20alle%20die%20gleichen%20s%20beschreiben%2C%20scheint%20es%2C%20als%20g%C3%A4be%20es%20eine%20Menge%20Rekursion.%20Ich%20bin%20mir%20auch%20nicht%20sicher%2C%20wie%20die%20Verlustfunktion%20aussehen%20w%C3%BCrde.%20In%20Matlab%20geben%20wir%20Sch%C3%A4tzwerte%20ein%2C%20berechnen%20die%20kleinsten%20Quadrate%20zwischen%20der%20Sch%C3%A4tzung%20und%20dem%20berechneten%20Wert%2C%20aktualisieren%20sie%2C%20wenn%20die%20Summe%20der%20quadrierten%20Differenzen%20aller%20Sch%C3%A4tzwerte%20und%20Gleichungen%20au%C3%9Ferhalb%20einer%20gewissen%20Toleranz%20liegt%2C%20und%20f%C3%BChren%20dann%20eine%20Schleife%20durch.%20Ich%20gehe%20davon%20aus%2C%20dass%20dies%20intern%20von%20der%20nichtlinearen%20Plattform%20erledigt%20wird%2C%20aber%20ist%20mein%20Ziel%20dann%20Null%2C%20da%20ich%20m%C3%B6chte%2C%20dass%20die%20Summe%20der%20quadrierten%20Differenzen%20Null%20ist%3F%20Oder%20wenn%20nicht%2C%20wie%20stelle%20ich%20mehrere%20Gleichungen%20auf%3F%3CBR%20%2F%3E%3CBR%20%2F%3E%20Entschuldigung%2C%20wenn%20das%20viel%20einfacher%20ist%2C%20als%20ich%20denke.%3CBR%20%2F%3E%3CBR%20%2F%3E%3CBR%20%2F%3E%3C%2FLINGO-BODY%3E%3CLINGO-LABS%20id%3D%22lingo-labs-707635%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CLINGO-LABEL%3EErweiterte%20statistische%20Modellierung%3C%2FLINGO-LABEL%3E%3CLINGO-LABEL%3EWindows%3C%2FLINGO-LABEL%3E%3C%2FLINGO-LABS%3E%3CLINGO-SUB%20id%3D%22lingo-sub-707895%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20Regression%20der%20kleinsten%20Quadrate%20f%C3%BCr%20nichtlineare%20Gleichungssysteme%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-707895%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EEine%20M%C3%B6glichkeit%2C%20die%20ich%20vorschlage%2C%20ist%20ein%20alter%20Trick%2C%20bei%20dem%20eine%20geeignete%20verlorene%20Funktion%20definiert%20wird.%20In%20Ihrem%20Fall%20kann%20die%20verlorene%20Funktion%20sein%3A%3C%2FP%3E%0A%3CP%3E(s-f1(...))%5E2%20%2B%20(s-f2(...))%5E2%20%2B%20(s-f3(...))%5E2%20%2B%20...%3C%2FP%3E%0A%3CP%3EJedes%20Element%20ist%20der%20quadratische%20Fehler%20einer%20Gleichung%20in%20Ihren%20Systemen.%20Sie%20fassen%20sie%20zusammen%20und%20minimieren%20den%20Gesamtfehler.%20Dieser%20Ansatz%20wandelt%20ein%20nichtlineares%20Problem%20der%20kleinsten%20Quadrate%20in%20ein%20Problem%20der%20Verlustfunktionsoptimierung%20um.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EIn%20der%20Zwischenzeit%20denke%20ich%2C%20dass%20es%20immer%20noch%20machbar%20ist%2C%20nichtlineare%20kleinste%20Quadrate%20f%C3%BCr%20ein%20Gleichungssystem%20zu%20verwenden.%20Hier%20sind%20die%20Schritte%3A%3C%2FP%3E%0A%3COL%3E%0A%3CLI%3EErweitern%20Sie%20Ihre%20Datentabelle.%20F%C3%BCr%20jede%20Zeile%20erstellen%20Sie%20Kopien%20davon%2C%20und%20die%20Gesamtzahl%20der%20Kopien%20entspricht%20der%20Anzahl%20Ihrer%20Gleichungen%20in%20Ihrem%20System.%20Das%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2FJMP-Add-Ins%2FExpand-by-Frequency-Column-Add-In%2Fta-p%2F21361%22%20target%3D%22_self%22%3E%20Add-in%3C%2FA%3E%20k%C3%B6nnte%20f%C3%BCr%20diese%20Aufgabe%20n%C3%BCtzlich%20sein.%20Sie%20m%C3%BCssen%20eine%20Freq-Spalte%20erstellen%2C%20deren%20Zellenwerte%20die%20Anzahl%20der%20Gleichungen%20angeben.%3C%2FLI%3E%0A%3CLI%3EJetzt%20m%C3%BCssen%20Sie%20diese%20nicht%20ganz%20so%20einfache%20Formelspalte%20erstellen.%20Je%20nachdem%2C%20wie%20Sie%20die%20Zeilen%20aus%20dem%20letzten%20Schritt%20anordnen%2C%20m%C3%BCssen%20Sie%20die%20Formel%20m%C3%B6glicherweise%20anders%20schreiben.%20Aber%20das%20Ziel%20ist%20das%20Folgende.%20Ordnen%20Sie%20jede%20Kopie%20der%20Originalzeile%20einer%20Gleichung%20in%20Ihrem%20System%20zu.%20Letztendlich%20ist%20also%20jede%20Kopie%20einer%20Zeile%20einer%20bestimmten%20Gleichung%20in%20Ihrem%20System%20zugeordnet.%20Sie%20m%C3%BCssen%20wahrscheinlich%20herausfinden%2C%20wie%20Sie%20die%20Zeilennummer%20mit%20der%20Gleichungsnummer%20verkn%C3%BCpfen.%20Wenn%20sich%20die%20Kopien%20in%20aufeinanderfolgenden%20Zeilen%20befinden%2C%20wie%20das%20Ergebnis%20des%20obigen%20Add-Ins%20ist%2C%20ben%C3%B6tigen%20Sie%20m%C3%B6glicherweise%20die%20Funktion%20%E2%80%9EModulo%E2%80%9C%2C%20um%20die%20Zuordnung%20vorzunehmen.%3C%2FLI%3E%0A%3C%2FOL%3E%0A%3CP%3EAm%20Ende%20verwenden%20Sie%20das%20Nichtlineare%2C%20wie%20Sie%20es%20kennen%2C%20um%20das%20Problem%20der%20kleinsten%20Quadrate%20zu%20l%C3%B6sen.%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-707971%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20Regression%20der%20kleinsten%20Quadrate%20f%C3%BCr%20nichtlineare%20Gleichungssysteme%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-707971%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EIch%20habe%20einen%20Code%2C%20den%20ich%20verwende%2C%20um%20einen%20Feuchtigkeitsadsorptionsprozess%20zu%20modellieren%20%E2%80%93%20er%20sucht%20nach%20Gleichgewichtsbedingungen%2C%20wie%20sie%20durch%20mehrere%20physikalische%20Modelle%20beschrieben%20werden%20%E2%80%93%20ich%20werde%20sehen%2C%20ob%20ich%20eine%20generische%20Version%20des%20Codes%20erstellen%20kann%2C%20die%20ich%20hier%20teilen%20kann.%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-709660%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20Regression%20der%20kleinsten%20Quadrate%20f%C3%BCr%20nichtlineare%20Gleichungssysteme%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-709660%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EHallo%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F2781%22%20target%3D%22_blank%22%3E%20%40peng_liu%3C%2FA%3E%20Vielen%20Dank%20f%C3%BCr%20die%20Antwort%20und%20entschuldigen%20Sie%20die%20Verz%C3%B6gerung!%20Dissertation%20%2B%202%20Monate%20altes%20Baby%20lassen%20Sie%20vergessen%2C%20den%20Dingen%20nachzugehen.%3CBR%20%2F%3E%3CBR%20%2F%3E%3C%2FP%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3CP%3EWas%20w%C3%BCrdest%20du%20als%20s%20w%C3%A4hlen%3F%20Ich%20habe%20kein%20s%20gemessen%2C%20und%20im%20Matlab-Code%20erraten%20wir%20ein%20s%20und%20aktualisieren%20es%20dann.%20Wie%20w%C3%BCrden%20Sie%20dies%20vorschlagen%3F%3C%2FP%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3CP%3EDie%20Methode%20der%20kleinsten%20Quadrate%20sieht%20interessant%20aus.%20Haben%20Sie%20eine%20Tabelle%2C%20die%20Sie%20f%C3%BCr%20ein%20anderes%20Projekt%20erstellt%20haben%2C%20das%20ich%20mir%20ansehen%20k%C3%B6nnte%20und%20das%20eine%20%C3%A4hnliche%20Funktion%20hat%3F%20Bei%20all%20meinen%20Skripten%20habe%20ich%20nicht%20viel%20mit%20zeilenbasierten%20Formeln%20gemacht%20und%20bin%20dabei%20spektakul%C3%A4r%20gescheitert.%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-709664%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20Regression%20der%20kleinsten%20Quadrate%20f%C3%BCr%20nichtlineare%20Gleichungssysteme%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-709664%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EHallo%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F4536%22%20target%3D%22_blank%22%3E%20%40David_Burnham%3C%2FA%3E%20-%20Ja%2C%20wenn%20Sie%20eine%20generische%20Version%20davon%20h%C3%A4tten%2C%20w%C3%A4re%20das%20%C3%A4u%C3%9Ferst%20hilfreich.%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-709724%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20Regression%20der%20kleinsten%20Quadrate%20f%C3%BCr%20nichtlineare%20Gleichungssysteme%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-709724%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EGl%C3%BCckwunsch!%3C%2FP%3E%0A%3CP%3E%E2%80%9Es%E2%80%9C%20ist%20hier%20also%20ein%20unbekannter%20Parameter.%20Schreiben%20Sie%20in%20diesem%20Fall%20alle%20Ihre%20Gleichungen%20etwa%20so%20um%3A%200%20%3D%20f(...)%20-%20s.%3C%2FP%3E%0A%3CP%3EOder%20wenn%20Ihre%20Gleichungen%20bekannte%20Gr%C3%B6%C3%9Fen%20enthalten%2C%20verschieben%20Sie%20diese%20auf%20die%20linke%20Seite.%20Die%20linke%20Seite%20ist%20Ihr%20Y%2C%20wenn%20Sie%20die%20nichtlineare%20Plattform%20verwenden.%3C%2FP%3E%0A%3CP%3EIch%20habe%20keine%20Beispiele%2C%20also%20habe%20ich%20mir%20eines%20ausgedacht.%20Anbei%3A%20Nonsens-System%20von%20eqns.jmp%3C%2FP%3E%0A%3CP%3EEs%20hat%3C%2FP%3E%0A%3COL%3E%0A%3CLI%3Eeine%20Y-Spalte%2C%20bekannte%20Gr%C3%B6%C3%9Fen.%3C%2FLI%3E%0A%3CLI%3Eeine%20Formelspalte%2C%20die%20auf%20der%20rechten%20Seite%20die%20Gr%C3%B6%C3%9Fe%20Ihrer%20Gleichungen%20anzeigt%3C%2FLI%3E%0A%3CLI%3EEine%20Beschriftungsspalte%20gibt%20an%2C%20dass%20ungerade%20Zeilen%20der%20ersten%20Gleichung%20und%20gerade%20Zeilen%20der%20zweiten%20Gleichung%20entsprechen%3C%2FLI%3E%0A%3CLI%3Eandere%20bekannte%20Gr%C3%B6%C3%9Fen%2C%20die%20Teil%20der%20Gleichung%20auf%20der%20rechten%20Seite%20sind.%3C%2FLI%3E%0A%3C%2FOL%3E%0A%3CP%3ESchauen%20Sie%20sich%20die%20Formel%20in%20der%20Spalte%20%E2%80%9EFormel%E2%80%9C%20an%2C%20um%20zu%20sehen%2C%20wie%20Sie%20zwei%20Gleichungen%20in%20einer%20einzigen%20Spalte%20verteilen.%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-710249%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20Regression%20der%20kleinsten%20Quadrate%20f%C3%BCr%20nichtlineare%20Gleichungssysteme%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-710249%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EDanke%20f%C3%BCr%20die%20Anleitung%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F2781%22%20target%3D%22_blank%22%3E%20%40peng_liu%3C%2FA%3E%20!%3C%2FP%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3CP%3EIch%20habe%20eine%20Tabelle%20zusammengestellt%20und%20sie%20scheint%20zu%20funktionieren%2C%20wenn%20ich%20ein%20paar%20Zeilen%20habe%2C%20aber%20wenn%20ich%20versuche%2C%20mehr%20als%20ein%20paar%20Zeilen%20zu%20erstellen%2C%20erhalte%20ich%20Folgendes%3A%3C%2FP%3E%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22ehchandler_0-1702931524480.png%22%20style%3D%22width%3A%20378px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F59842i71B9D90262F8C0E1%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22ehchandler_0-1702931524480.png%22%20alt%3D%22ehchandler_0-1702931524480.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%3CP%3EIst%20das%20tats%C3%A4chlich%20ein%20Problem%2C%20wenn%20einfach%20zu%20viele%20Zeilen%20vorhanden%20sind%3F%20Der%20Fehler%20scheint%20bestehen%20zu%20bleiben%2C%20wenn%20ich%20die%20Zeilen%20auf%20das%20Minimum%20(in%20diesem%20Fall%203)%20reduziere%20und%20eine%20neue%20Tabelle%20erstellen%20muss.%20Haben%20Sie%20irgendwelche%20Gedanken%20dazu%3F%20Hier%20ist%20der%20Tisch%2C%20den%20ich%20mit%20einer%20Barebone-Version%20des%20Modells%20erstellt%20habe%2C%20damit%20er%20nicht%20umst%C3%A4ndlich%20ist.%20Au%C3%9Ferdem%20habe%20ich%20die%20Parameter%20in%20eigene%20Spalten%20(Phi0%2C%20Sigma0%2C%20pHf)%20eingeteilt%20und%20die%20Zwischenformeln%20erweitert%2C%20um%20das%20Betrachten%20der%20Spaltenformel%20zu%20erleichtern.%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-710254%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20Regression%20der%20kleinsten%20Quadrate%20f%C3%BCr%20nichtlineare%20Gleichungssysteme%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-710254%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EIch%20bin%20nicht%20sicher%2C%20wie%20ich%20die%20nichtlineare%20Plattform%20mit%20dieser%20Datentabelle%20ausf%C3%BChren%20soll.%20Was%20ist%20Y%2C%20was%20ist%20X%3F%3C%2FP%3E%0A%3CP%3EAber%20wenn%20die%20Spalte%20%E2%80%9EFormel%E2%80%9C%20X%20ist%2C%20glaube%20ich%20nicht%2C%20dass%20es%20funktionieren%20w%C3%BCrde.%20Die%20Formel%20von%20X%20muss%20Parameter%20und%20keine%20Tabellenvariablen%20verwenden.%3C%2FP%3E%0A%3CP%3EIm%20Folgenden%20sehen%20Sie%2C%20wie%20die%20X-Spalte%20in%20dieser%20%E2%80%9EUnsinn-Datentabelle%E2%80%9C%20aussieht.%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702933200603.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F59844i4EC3B5B23F6C74D1%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22peng_liu_0-1702933200603.png%22%20alt%3D%22peng_liu_0-1702933200603.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3EIn%20Ihrer%20Spalte%20%E2%80%9EFormel%E2%80%9C%20ist%20unter%20%E2%80%9EParameter%E2%80%9C%20nichts%20aufgef%C3%BChrt.%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-710260%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20Regression%20der%20kleinsten%20Quadrate%20f%C3%BCr%20nichtlineare%20Gleichungssysteme%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-710260%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EHey%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F2781%22%20target%3D%22_blank%22%3E%20%40peng_liu%3C%2FA%3E%20-%20Ja%2C%20weil%20die%20Parameter%20die%20Formel%20100-mal%20l%C3%A4nger%20machten%2C%20habe%20ich%20sie%20in%20die%20Spalten%20Phi0%2C%20Sigma0%20und%20pHf%20geschrieben%20(Spalten%206%E2%80%938%20nach%20der%20Spalte%20mit%20einem%20%E2%80%9E.%E2%80%9C%20als%20Titel)%20und%20dann%20ausgew%C3%A4hlt%20Feld%20%E2%80%9EZwischenformeln%20erweitern%E2%80%9C%20unten%20auf%20der%20nichtlinearen%20Plattform.%20Auf%20diese%20Weise%20kann%20ich%20die%20Parameter%20verwenden%2C%20aber%20sie%20machen%20die%20Arbeit%20mit%20der%20Formelspalte%20nicht%20unm%C3%B6glich%2C%20da%20es%20f%C3%BCr%20jeden%20Parameter%20so%20viele%20%E2%80%9Eerweiterte%20Kategorien%E2%80%9C%20gibt.%3C%2FP%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3CP%3EIst%20das%20sinnvoll%3F%3C%2FP%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3CP%3EDer%20beigef%C3%BCgte%20Screenshot%20sollte%20diese%20Spalten%20und%20ihre%20Position%20in%20der%20Formel%20zeigen%2C%20falls%20dies%20klarer%20ist.%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-710263%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20Regression%20der%20kleinsten%20Quadrate%20f%C3%BCr%20nichtlineare%20Gleichungssysteme%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-710263%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3E%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F2781%22%20target%3D%22_blank%22%3E%40peng_liu%3C%2FA%3E%20Ich%20m%C3%B6chte%20auch%20sagen%2C%20dass%20ich%20herausgefunden%20habe%2C%20dass%201)%20die%20Option%20%E2%80%9ENur%20numerische%20Ableitungen%E2%80%9C%20anscheinend%20dazu%20f%C3%BChrt%2C%20dass%20es%20zur%20Hauptplattform%20durchgeht%2C%20und%202)%20dass%20es%20das%20zu%20geben%20scheint%2C%20wenn%20ich%20Parameter%20in%20mehr%20als%20einer%20der%20Gleichungen%20habe%20Fehler.%20Ich%20bin%20mir%20nicht%20sicher%2C%20ob%20dir%20das%20etwas%20sagt.%20Ich%20kann%20einfach%20keinen%20Hinweis%20auf%20diesen%20Fehler%20finden%20und%20bin%20daher%20ratlos.%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-710286%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20Regression%20der%20kleinsten%20Quadrate%20f%C3%BCr%20nichtlineare%20Gleichungssysteme%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-710286%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EDanke%20f%C3%BCr%20die%20Erkl%C3%A4rung%2C%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F9102%22%20target%3D%22_blank%22%3E%20%40ehchandler%3C%2FA%3E%20Ich%20verstehe%2C%20was%20Sie%20jetzt%20tun.%20Was%20Sie%20tun%2C%20ist%20ein%20sch%C3%B6ner%20Trick%20f%C3%BCr%20ein%20so%20kompliziertes%20Problem.%20Etwas%20Neues%20f%C3%BCr%20mich!%3C%2FP%3E%0A%3CP%3EIch%20habe%20mir%20die%20Fehlermeldung%20angesehen.%20Sie%20m%C3%BCssen%20%E2%80%9ENur%20numerische%20Ableitungen%E2%80%9C%20aktivieren.%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22peng_liu_0-1702946317431.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702946317431.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702946317431.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702946317431.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702946317431.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702946317431.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702946317431.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702946317431.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702946317431.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702946317431.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702946317431.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702946317431.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702946317431.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702946317431.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702946317431.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702946317431.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702946317431.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702946317431.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702946317431.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702946317431.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702946317431.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702946317431.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702946317431.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702946317431.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702946317431.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702946317431.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702946317431.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702946317431.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702946317431.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702946317431.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702946317431.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702946317431.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702946317431.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702946317431.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702946317431.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702946317431.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F59853i059A629DB84EA944%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22peng_liu_0-1702946317431.png%22%20alt%3D%22peng_liu_0-1702946317431.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3ESie%20haben%20mehr%20als%20300%20Parameter%2C%20das%20zugrunde%20liegende%20symbolische%20Derivat%20st%C3%B6%C3%9Ft%20an%20eine%20Grenze.%3C%2FP%3E%0A%3CP%3EIch%20sehe%2C%20Sie%20haben%20337%20Zeilen%2C%20aber%20339%20Parameter.%20Diese%20Teilmenge%20erh%C3%A4lt%20keine%20L%C3%B6sung.%20Ich%20hoffe%2C%20bei%20Ihrem%20kompletten%20Set%20tritt%20das%20Problem%20nicht%20auf.%3C%2FP%3E%0A%3CP%3EW%C3%A4hrend%20ich%20mir%20unterdessen%20Ihr%20Setup%20ansehe%2C%20f%C3%A4llt%20mir%20etwas%20Interessantes%20auf.%20Ich%20kenne%20Ihr%20Thema%20nicht.%20Aber%20in%20Ihrem%20Setup%20sind%20Phi0%2C%20Sigma0%20und%20pHf%20diskrete%20Funktionen%20von%20pH0.%20Sind%20die%20Beziehungen%20zwischen%20den%20dreien%20und%20pH0%20bekannt%3F%20Wenn%20zwischen%20ihnen%20kontinuierliche%20Beziehungen%20(mit%20weniger%20unbekannten%20Parametern)%20bekannt%20sind%2C%20k%C3%B6nnen%20Sie%20die%20Anzahl%20der%20Parameter%20erheblich%20reduzieren.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-710380%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20Regression%20der%20kleinsten%20Quadrate%20f%C3%BCr%20nichtlineare%20Gleichungssysteme%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-710380%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3E%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F2781%22%20target%3D%22_blank%22%3E%40peng_liu%3C%2FA%3E%20ok%2C%20das%20macht%20mehr%20Sinn.%20Kennen%20Sie%20zuf%C3%A4llig%20die%20Begrenzung%20der%20Anzahl%20von%20Termen%20oder%20Parametern%20im%20symbolischen%20Ableitungscode%3F%20Weil%20ich%20denke%2C%20ich%20k%C3%B6nnte%20einfach%20eine%20Spalte%20mit%20ein%20paar%20Zahlen%20haben%20und%20die%20Berechnung%20dann%20mit%20der%20Funktion%20%E2%80%9Enach%E2%80%9C%20segmentieren.%20Die%20symbolische%20Ableitung%20ist%20einfach%20viel%20schneller.%3CBR%20%2F%3E%3CBR%20%2F%3E%20Und%20hmmm.%20Ich%20bin%20mir%20nicht%20sicher%2C%20woher%20die%20neuen%20Parameter%20stammen.%20Ich%20werde%20es%20%C3%BCberpr%C3%BCfen%2C%20wenn%20ich%20reinkomme.%20Danke%2C%20dass%20du%20das%20bemerkt%20hast.%20Drei%20verwandte%20Fragen%3A%201)%20Wie%20haben%20Sie%20die%20Anzahl%20der%20Parameter%20gesehen%20und%202)%20Gibt%20es%20eine%20M%C3%B6glichkeit%2C%20Parameter%20im%20Spaltenformelmen%C3%BC%20in%20gro%C3%9Fen%20Mengen%20zu%20l%C3%B6schen%3F%20Soweit%20ich%20das%20beurteilen%20kann%2C%20m%C3%BCssen%20Sie%20mit%20der%20rechten%20Maustaste%20klicken%20und%20nacheinander%20auf%20%E2%80%9EL%C3%B6schen%E2%80%9C%20klicken.%203)%20Gibt%20es%20eine%20M%C3%B6glichkeit%2C%20eine%20Tabelle%20zur%20Eingabe%20der%20Parameter%20und%20ihrer%20Grenzen%20zu%20verwenden%3F%20Das%20w%C3%BCrde%20die%20Geschwindigkeit%20wirklich%20verbessern.%3CBR%20%2F%3E%3CBR%20%2F%3E%20Danke!%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-710396%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20Regression%20der%20kleinsten%20Quadrate%20f%C3%BCr%20nichtlineare%20Gleichungssysteme%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-710396%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EDie%20Grenze%20liegt%20nicht%20in%20der%20Anzahl%20der%20Parameter.%20Aber%20die%20Anzahl%20der%20Parameter%20ist%20in%20Ihrem%20Fall%20ein%20Faktor.%20Man%20muss%20also%20versuchen%2C%20es%20zu%20sehen.%3C%2FP%3E%0A%3CP%3EIch%20sehe%2C%20dass%20Ihr%20System%20drei%20verschiedene%20Arten%20von%20Parametern%20hat%3A%20Phi%2C%20Sigma%2C%20pHf.%20Sie%20sind%20alle%20auf%20den%20pH-Wert%200%20angewiesen.%20Daher%20sind%20die%20Parameter%20bei%20unterschiedlichem%20pH0%20unabh%C3%A4ngig.%20Sie%20haben%20also%20Recht%2C%20eine%20%E2%80%9EBy%E2%80%9C-Anpassung%20kann%20die%20Komplexit%C3%A4t%20reduzieren.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EPS%20%E2%80%9EBy%E2%80%9C%20funktioniert%20nicht%20wie%20gew%C3%BCnscht.%20Alle%20Zeilen%20sehen%20alle%20Parameter%20in%20der%20Spalte.%20Ich%20sehe%20nicht%2C%20dass%20es%20m%C3%B6glich%20ist%2C%20einzelne%20Zeilen%20in%20%E2%80%9EBy%E2%80%9C%20zuzulassen%2C%20um%20nur%20eine%20Teilmenge%20der%20Parameter%20anzuzeigen.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EIch%20sehe%20die%20Anzahl%20der%20Parameter%20nach%20dem%20Start%20von%20Nonlinear.%20Es%20gibt%20eine%20Reihe%20von%20Parametern.%20Ich%20klicke%20mit%20der%20rechten%20Maustaste%20und%20erstelle%20daraus%20eine%20Tabelle%2C%20z%C3%A4hle%20die%20Zeilen.%20F%C3%BCr%20die%20letzten%20beiden%20Zeilen%20w%C3%BCrde%20ich%20vorschlagen%2C%20einfach%20die%20JSL-Formel%20zu%20bearbeiten.%20%C3%96ffnen%20Sie%20den%20Formeleditor%20der%20Spalte.%20Kopieren%20Sie%20es%20und%20f%C3%BCgen%20Sie%20es%20in%20einen%20JSL-Editor%20ein.%20Nach%20der%20Bearbeitung%20kopieren%20und%20wieder%20einf%C3%BCgen.%20Auf%20diese%20Weise%20k%C3%B6nnen%20Sie%20die%20Liste%20der%20Parameter%20bearbeiten%3A%3C%2FP%3E%0A%3CP%3EDer%20Abschnitt%20%E2%80%9E1%E2%80%9C%20ist%20Ihre%20Parameterliste.%20Die%20%E2%80%9E2%E2%80%9C%20ist%20die%20eigentliche%20Formel.%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22peng_liu_0-1702993133202.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702993133202.png%22%20style%3D%22width%3A%20375px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702993133202.png%22%20style%3D%22width%3A%20375px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702993133202.png%22%20style%3D%22width%3A%20375px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702993133202.png%22%20style%3D%22width%3A%20375px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702993133202.png%22%20style%3D%22width%3A%20375px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702993133202.png%22%20style%3D%22width%3A%20375px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702993133202.png%22%20style%3D%22width%3A%20375px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702993133202.png%22%20style%3D%22width%3A%20375px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702993133202.png%22%20style%3D%22width%3A%20375px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702993133202.png%22%20style%3D%22width%3A%20375px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702993133202.png%22%20style%3D%22width%3A%20375px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702993133202.png%22%20style%3D%22width%3A%20375px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702993133202.png%22%20style%3D%22width%3A%20375px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702993133202.png%22%20style%3D%22width%3A%20375px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702993133202.png%22%20style%3D%22width%3A%20375px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702993133202.png%22%20style%3D%22width%3A%20375px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702993133202.png%22%20style%3D%22width%3A%20375px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702993133202.png%22%20style%3D%22width%3A%20375px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702993133202.png%22%20style%3D%22width%3A%20375px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702993133202.png%22%20style%3D%22width%3A%20375px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1702993133202.png%22%20style%3D%22width%3A%20375px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F59866iD5E86F15E080829E%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22peng_liu_0-1702993133202.png%22%20alt%3D%22peng_liu_0-1702993133202.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-710457%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20Regression%20der%20kleinsten%20Quadrate%20f%C3%BCr%20nichtlineare%20Gleichungssysteme%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-710457%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EInformieren%20Sie%20sich%20%C3%BCber%20die%20Verwendung%20von%20%E2%80%9EBy%E2%80%9C.%3C%2FP%3E%0A%3CP%3EEs%20scheint%2C%20dass%20es%20eine%20M%C3%B6glichkeit%20gibt%2C%20By%20zu%20verwenden%20und%20die%20Anzahl%20der%20Parameter%20zu%20reduzieren%2C%20um%20die%20Unabh%C3%A4ngigkeit%20zwischen%20Zeilen%20zu%20nutzen.%3C%2FP%3E%0A%3CP%3EIch%20h%C3%A4nge%20Version%202%20des%20%E2%80%9EUnsinn-Systems%E2%80%9C%20an.%20Erkl%C3%A4re%20zun%C3%A4chst%2C%20was%20ich%20eingerichtet%20habe.%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22peng_liu_0-1703007590801.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1703007590801.png%22%20style%3D%22width%3A%20365px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1703007590801.png%22%20style%3D%22width%3A%20365px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1703007590801.png%22%20style%3D%22width%3A%20365px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1703007590801.png%22%20style%3D%22width%3A%20365px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1703007590801.png%22%20style%3D%22width%3A%20365px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1703007590801.png%22%20style%3D%22width%3A%20365px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1703007590801.png%22%20style%3D%22width%3A%20365px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1703007590801.png%22%20style%3D%22width%3A%20365px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1703007590801.png%22%20style%3D%22width%3A%20365px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1703007590801.png%22%20style%3D%22width%3A%20365px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1703007590801.png%22%20style%3D%22width%3A%20365px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1703007590801.png%22%20style%3D%22width%3A%20365px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1703007590801.png%22%20style%3D%22width%3A%20365px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1703007590801.png%22%20style%3D%22width%3A%20365px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1703007590801.png%22%20style%3D%22width%3A%20365px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1703007590801.png%22%20style%3D%22width%3A%20365px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1703007590801.png%22%20style%3D%22width%3A%20365px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1703007590801.png%22%20style%3D%22width%3A%20365px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1703007590801.png%22%20style%3D%22width%3A%20365px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F59878iAE6518A629F9CD6F%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22peng_liu_0-1703007590801.png%22%20alt%3D%22peng_liu_0-1703007590801.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3EIch%20habe%20zwei%20lineare%20Gleichungssysteme%20aufgestellt.%20Zeile%201%20und%202%20sind%20System%20%E2%80%9Ea%E2%80%9C%2C%20die%20Gruppenspalte.%20Und%20Zeile%203%20und%204%20sind%20System%20%E2%80%9Eb%E2%80%9C.%3C%2FP%3E%0A%3CP%3EJedes%20lineare%20System%20hat%20zwei%20Parameter%20%E2%80%9Eb0%E2%80%9C%20und%20%E2%80%9Eb1%E2%80%9C%2C%20die%20jedoch%20von%20System%20zu%20System%20unterschiedlich%20sind.%20Und%20ich%20verwende%20die%20Parameter%20x1%20und%20x2%2C%20um%20%E2%80%9ESimY%E2%80%9C%20zu%20erzeugen.%20F%C3%BCr%20meine%20Analyse%20kopiere%20ich%20SimY%20nach%20Y.%3C%2FP%3E%0A%3CP%3ESchauen%20Sie%20sich%20nun%20die%20Spalte%20%E2%80%9EFormel%E2%80%9C%20an.%20Ich%20unterscheide%20nicht%20zwischen%20%E2%80%9Eb0%E2%80%9C%20und%20%E2%80%9Eb1%E2%80%9C%20nach%20Gruppe.%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22peng_liu_1-1703007764537.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_1-1703007764537.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_1-1703007764537.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_1-1703007764537.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_1-1703007764537.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_1-1703007764537.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_1-1703007764537.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_1-1703007764537.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_1-1703007764537.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_1-1703007764537.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_1-1703007764537.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_1-1703007764537.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_1-1703007764537.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_1-1703007764537.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_1-1703007764537.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_1-1703007764537.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_1-1703007764537.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_1-1703007764537.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_1-1703007764537.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_1-1703007764537.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F59879i39FF98139A98D08D%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22peng_liu_1-1703007764537.png%22%20alt%3D%22peng_liu_1-1703007764537.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3EF%C3%BChren%20Sie%20nun%20Nonlinear%20mit%20By%20%3D%20Group%20aus.%20Und%20hier%20ist%20der%20Bericht%3A%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22peng_liu_3-1703007893600.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_3-1703007893600.png%22%20style%3D%22width%3A%20163px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_3-1703007893600.png%22%20style%3D%22width%3A%20163px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_3-1703007893600.png%22%20style%3D%22width%3A%20163px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_3-1703007893600.png%22%20style%3D%22width%3A%20163px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_3-1703007893600.png%22%20style%3D%22width%3A%20163px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_3-1703007893600.png%22%20style%3D%22width%3A%20163px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_3-1703007893600.png%22%20style%3D%22width%3A%20163px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_3-1703007893600.png%22%20style%3D%22width%3A%20163px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_3-1703007893600.png%22%20style%3D%22width%3A%20163px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_3-1703007893600.png%22%20style%3D%22width%3A%20163px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_3-1703007893600.png%22%20style%3D%22width%3A%20163px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_3-1703007893600.png%22%20style%3D%22width%3A%20163px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_3-1703007893600.png%22%20style%3D%22width%3A%20163px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_3-1703007893600.png%22%20style%3D%22width%3A%20163px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_3-1703007893600.png%22%20style%3D%22width%3A%20163px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_3-1703007893600.png%22%20style%3D%22width%3A%20163px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_3-1703007893600.png%22%20style%3D%22width%3A%20163px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_3-1703007893600.png%22%20style%3D%22width%3A%20163px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_3-1703007893600.png%22%20style%3D%22width%3A%20163px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F59881i96162BA5339319CA%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22peng_liu_3-1703007893600.png%22%20alt%3D%22peng_liu_3-1703007893600.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3EEs%20findet%20separate%2C%20richtige%20L%C3%B6sungen%20f%C3%BCr%20die%20jeweiligen%20Systeme.%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-710478%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20Regression%20der%20kleinsten%20Quadrate%20f%C3%BCr%20nichtlineare%20Gleichungssysteme%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-710478%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3E%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F2781%22%20target%3D%22_blank%22%3E%40peng_liu%3C%2FA%3E%20Ja%2C%20ich%20war%20auch%20auf%20das%20By-Problem%20gesto%C3%9Fen.%20Deine%20L%C3%B6sung%20sieht%20gut%20aus!%20Wenn%20ich%20jedoch%20versuche%2C%20es%20auf%20meine%20Tabelle%20anzuwenden%2C%20tritt%20ein%20Fehler%20auf.%20Sehen%20Sie%20in%20der%20beigef%C3%BCgten%20Tabelle%20ein%20eklatantes%20Problem%3F%20Phi0%2C%20Sigma0%20und%20pHf%20sind%20alle%20gleich%20wie%20zuvor.%20Ich%20habe%20jedoch%20eine%20Spalte%20%E2%80%9Ezyklische%20Kategorisierung%E2%80%9C%20f%C3%BCr%20die%20von%20Ihnen%20erw%C3%A4hnte%20Methode%20%E2%80%9Enach%E2%80%9C%20erstellt%2C%20habe%20dann%20aber%20eine%20Spalte%20%E2%80%9EParameter%20nach%20Spalte%E2%80%9C.%20Ich%20verwende%20die%20Ebenen%20dieser%20Spalte%2C%20um%20Parameter%20nach%20Kategorien%20zu%20erweitern.%20Da%20%3ACyclic%20Categorization%20und%20%3AParameter%20by%20Column%20orthogonal%20sind%20(oder%20wie%20auch%20immer%20das%20richtige%20Wort%20lautet)%2C%20sollte%20dies%20erm%C3%B6glichen%2C%20dass%20die%20Parameter%20mit%20leichten%20Vers%C3%A4tzen%20%C3%BCber%20die%20gesamte%20Kurve%20iterieren%20(pH0%20ist%20die%20x-Achse)%2C%20und%20dann%20kann%20ich%20sie%20einfach%20zusammenf%C3%BCgen%20noch%20einmal%20am%20Ende.%20Allerdings%20schl%C3%A4gt%20es%2C%20wie%20gesagt%2C%20fehl%20und%20aktualisiert%20nur%20eine%20der%20Ebenen%20der%20Parameter%2C%20und%20ich%20wei%C3%9F%20nicht%2C%20warum.%3C%2FP%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3CP%3EK%C3%B6nnte%20dies%20ein%20Problem%20bei%20der%20Interaktion%20von%20by%20mit%20um%20Kategorien%20erweiterten%20Parametern%20sein%3F%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-710636%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20Regression%20der%20kleinsten%20Quadrate%20f%C3%BCr%20nichtlineare%20Gleichungssysteme%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-710636%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EIn%20Spalte%203%20fehlen%20Werte%2C%20was%20erkl%C3%A4rt%2C%20warum%20nur%20eine%20Gruppe%20ein%20Ergebnis%20hat.%20Aber%20die%20%E2%80%9EFormel%E2%80%9C%20ist%20nicht%20so%20aufgebaut%2C%20wie%20ich%20es%20empfohlen%20habe.%20Zur%20Veranschaulichung%20f%C3%BCge%20ich%20test.v2%20bei.%20Mit%20diesem%20Ansatz%20ben%C3%B6tigen%20Sie%20Phi0%2C%20Sigma0%20und%20pHf%20in%20der%20Mitte%20nicht%20mehr.%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-710646%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20Regression%20der%20kleinsten%20Quadrate%20f%C3%BCr%20nichtlineare%20Gleichungssysteme%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-710646%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3E%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F2781%22%20target%3D%22_blank%22%3E%40peng_liu%3C%2FA%3E%20Oh%20duh.%20Ich%20bin%20mir%20nicht%20sicher%2C%20wie%20ich%20so%20viele%20fehlende%20Zeilen%20%C3%BCbersehen%20habe.%20Danke%2C%20dass%20du%20das%20bemerkt%20hast.%3C%2FP%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3CP%3EVielleicht%20verstehe%20ich%20das%20falsch%2C%20aber%20da%20pH0%20meine%20x-Achse%20ist%2C%20bedeutet%20Ihre%20L%C3%B6sung%20dann%20nur%2C%20dass%20die%20by-Spalte%20die%20x-Spalte%20ist%3F%20Wenn%20Sie%20beispielsweise%20100%20x-Werte%20haben%2C%20haben%20Sie%20sozusagen%20100%20%E2%80%9EGruppen%E2%80%9C%3F%3C%2FP%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3CP%3EWenn%20ja%2C%20w%C3%A4re%20die%20Version%20zum%20Erweitern%20nach%20Spalten%20nicht%20besser%2C%20da%20Sie%20den%20Fehler%20%C3%BCber%20mehrere%20Punkte%20hinweg%20minimieren%20und%20nicht%20nur%20eine%20eigenst%C3%A4ndige%20Minimierung%20f%C3%BCr%20jeden%20einzelnen%20Punkt%3F%20Oder%20ist%20es%20Punkt%20f%C3%BCr%20Punkt%20besser%2C%20mit%20Verlustfunktionen%20umzugehen%3F%20Ich%20passe%20gerade%20den%20Matlab-Code%2C%20den%20ich%20hatte%2C%20an%20JMP%20an%2C%20habe%20aber%20nicht%20wirklich%20Erfahrung%20mit%20Minimierungsalgorithmen%2C%20also%20bin%20ich%20auf%20der%20Suche%20nach%20der%20besten%20Technik.%3C%2FP%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3CP%3EPS%20Und%20vielleicht%20habe%20ich%20es%20nicht%20klargestellt%2C%20aber%20es%20sollte%20f%C3%BCr%20jeden%20pH0-Wert%20(der%20die%20abh%C3%A4ngige%20Variable%20ist)%20einen%20eindeutigen%20Wertesatz%20f%C3%BCr%20jeden%20Parameter%20geben.%20Deshalb%20dachte%20ich%2C%20ich%20m%C3%BCsste%20nach%20Kategorien%20erweitern.%3C%2FP%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3CP%3EDanke!%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-710918%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20Regression%20der%20kleinsten%20Quadrate%20f%C3%BCr%20nichtlineare%20Gleichungssysteme%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-710918%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EIch%20sehe%2C%20dass%20Ihre%20Spalte%20%E2%80%9EFormel%E2%80%9C%20in%20der%20Originaltabelle%20vom%20pH-Wert%20abh%C3%A4ngt.%20Aber%20die%20Spalte%20%E2%80%9EFormel%E2%80%9C%20in%20Ihrer%20test.jmp%20h%C3%A4ngt%20nicht%20von%20pH0%20ab.%20Ich%20sch%C3%A4tze%2C%20das%20ist%20ein%20Missverst%C3%A4ndnis%20zwischen%20uns.%20Lassen%20Sie%20mich%20weiterhin%20Ihre%20Originaldaten%20verwenden%2C%20sodass%20Phi0%2C%20Sigma0%20und%20pHf%20von%20pH0%20abh%C3%A4ngen%20und%20nicht%20von%20%E2%80%9EParameter%20nach%20Spalte%E2%80%9C.%3C%2FP%3E%0A%3CP%3ESchauen%20wir%20uns%20die%20ersten%20drei%20Zeilen%20an%3A%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22peng_liu_0-1703037164708.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1703037164708.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22peng_liu_0-1703037164708.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F59908i8498CC689C6BA9DB%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22peng_liu_0-1703037164708.png%22%20alt%3D%22peng_liu_0-1703037164708.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3EIhr%20pH0%20%3D%200%2C2.%20Aus%20diesem%20Grund%20kann%20die%20Formel%20der%20ersten%20Zeile%20wie%20folgt%20bezeichnet%20werden%3A%3C%2FP%3E%0A%3CP%3Ef1(Phi0_pH0_0.2%2C%20sigma0_pH0_0.2%2C%20pHf0_pH0_0.2).%3C%2FP%3E%0A%3CP%3EDie%20Formeln%20f%C3%BCr%20die%202.%20und%203.%20Zeile%20lauten%3A%3C%2FP%3E%0A%3CP%3Ef2(Phi0_pH0_0.2%2C%20sigma0_pH0_0.2%2C%20pHf0_pH0_0.2)%20und%3C%2FP%3E%0A%3CP%3Ef3(Phi0_pH0_0.2%2C%20sigma0_pH0_0.2%2C%20pHf0_pH0_0.2).%20Die%20drei%20Reihen%20bilden%20Gruppe%201.%3C%2FP%3E%0A%3CP%3ESchauen%20Sie%20sich%20nun%20die%20Reihe%204%2C%205%2C%206%20an.%20Ihr%20pH0%20%3D%200%2C3.%20Die%20drei%20Formeln%20lauten%20also%3A%3C%2FP%3E%0A%3CP%3Ef1(Phi0_pH0_0.3%2C%20sigma0_pH0_0.3%2C%20pHf0_pH0_0.3)%2C%3C%2FP%3E%0A%3CP%3Ef2(Phi0_pH0_0.3%2C%20sigma0_pH0_0.3%2C%20pHf0_pH0_0.3)%20und%3C%2FP%3E%0A%3CP%3Ef3(Phi0_pH0_0.3%2C%20sigma0_pH0_0.3%2C%20pHf0_pH0_0.3).%20Die%20drei%20Reihen%20bilden%20Gruppe%202.%3C%2FP%3E%0A%3CP%3EGruppe1%20und%20Gruppe2%20haben%20nicht%20denselben%20Parametersatz.%20Sie%20sind%20unabh%C3%A4ngig.%20Die%20Fehlerminimierung%20f%C3%BCr%20Gruppe1%20hat%20nichts%20mit%20der%20Fehlerminimierung%20f%C3%BCr%20Gruppe2%20zu%20tun.%20So%20k%C3%B6nnen%20wir%20Gruppe%20f%C3%BCr%20Gruppe%20optimieren.%3C%2FP%3E%0A%3CP%3EWenn%20Sie%20die%20Parameter%20in%20den%20drei%20Zwischenspalten%20als%20Phi0_pH0_0.2%2C%20Phi0_pH0_0.3%2C%20Phi0_pH0_0.4%20usw.%20eingestellt%20lassen%2C%20werden%20in%20jeder%20Zeile%20alle%20angezeigt.%20Sie%20k%C3%B6nnen%20sehen%2C%20dass%2C%20wenn%20Sie%20Nonlinear%20by%20pH0%20ausf%C3%BChren%2C%20in%20jeder%20Gruppe%20Hunderte%20von%20Parametern%20aufgelistet%20sind.%20Davon%20sind%20jedoch%20nur%20drei%20f%C3%BCr%20jede%20Zeile%20relevant%2C%20und%20zwar%20alle%20drei%20Zeilen.%3C%2FP%3E%0A%3CP%3EIch%20habe%20nur%20drei%20Parameter%20innerhalb%20der%20Spalte%20%E2%80%9EFormel%E2%80%9C%20erstellt.%20Ich%20habe%20sie%20paramPhi0%2C%20paramSigma0%2C%20parampHf%20genannt.%20Auch%20wenn%20es%20nur%20drei%20sind%2C%20erstellt%20die%20Plattform%2C%20wenn%20wir%20Nonlinear%20mit%20%E2%80%9EpH0%E2%80%9C%20ausf%C3%BChren%2C%20unterschiedliche%20S%C3%A4tze%20der%20drei%20Parameter%20mit%20%E2%80%9EpH0%E2%80%9C.%20Es%20erstellt%20im%20wahrsten%20Sinne%20des%20Wortes%20Hunderte%20von%20Parametern%20f%C3%BCr%20Sie%20mit%20%E2%80%9EpH0%E2%80%9C.%20Und%20jeder%20kleine%20Nichtlineare%20von%20pH0%20muss%20sich%20nur%20um%20drei%20Parameter%20k%C3%BCmmern.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%3C%2FLINGO-BODY%3E
Choose Language Hide Translation Bar
ehchandlerjr
Level V

Least squares regression for nonlinear system of equations

Hello - I have a moderately complex model for a physical process (ion adsorption for anyone who knows what that means). I have two starting variables, x1 and x2, and two measured outcomes, y1 and y2 that change with x1 and x2, and unmeasurable, or hard to measure, variables, g1,...,gn that don't change. One or both of x1 and x2 can also change for each row in a series. I have a set of nonlinear equations, s = f(x1, x2, y1,...,y2, g1,...,gn), as well as some other functions of different variables in f, depending on how complex I want the model to be. See the attachment for example equations.

The typical way we do this is in Matlab with lsqnonlin. Works well, but it's a bear to get running. I'd much rather have a (not-so-simple) column formula. However, I'm not entirely sure how to code it. The nonlinear regression thing is built for single equations, and with the three equations that all describe the same s, it seems like recursion would abound. I'm also not sure what the loss function would be. In matlab, we input guess values, calculate the least squares between the guess and the calculated value, update it if the sum of squared differences of all the guesses and equations falls outside some tolerance, and then loop. I'm assuming this is done internally by the nonlinear platform, but then is my target zero since I want the sum of squared differences to be zero? Or if not, how do I do multiple equations?

Apologizes if this is way simpler than I'm thinking.


Edward Hamer Chandler, Jr.
17 REPLIES 17
peng_liu
Level VII

Re: Least squares regression for nonlinear system of equations

The limit is not in terms of number of parameters. But the number of parameters is a factor in your case. So, you have to try and see.

I see your system has three distinct types of parameters: Phi, sigma, pHf. They are all conditioned on value of pH0. Therefore, the parameters are independent by different pH0. So, you are right, do a "By" fit can reduce the complexity.

 

P.S. "By" is not working as I wished. All rows see all parameters in the column. I don't see it is possible to let individual rows in By to see just a subset of parameters.

 

I see the number of parameters after launching the Nonlinear. There is a able of parameters. I right click and create a table out of it, count rows. For the last two rows, I would suggest just edit the JSL formula. Open up the formula editor of the column. Copy it, and paste into a JSL editor. After editing, copy and paste back. By such, you can edit the list of parameters:

The "1" section is your list of parameters. The "2" is the actual formula.

peng_liu_0-1702993133202.png

 

peng_liu
Level VII

Re: Least squares regression for nonlinear system of equations

Follow up on how to use "By".

Seems there is a way to use By and reduce the number of parameters to take advantage of independence among rows.

I attach v2 of the "nonsense system". First explain what I set up.

peng_liu_0-1703007590801.png

I set up two systems of linear equations. Row 1 and 2 are system "a", the Group column. And row 3 and 4 are system "b".

Each linear system has two parameters "b0" and "b1", but they are different between systems. And I use the parameters, x1, and x2 to produce "SimY". I copy SimY to Y for my analysis.

Now look at the "formula" column, I do not differentiate "b0" ad "b1" by Group.

peng_liu_1-1703007764537.png

Now run Nonlinear with By = Group. And here is the report:

peng_liu_3-1703007893600.png

It finds separate, correct, solutions for respective systems.

ehchandlerjr
Level V

Re: Least squares regression for nonlinear system of equations

@peng_liu Yea I had run into the by issue as well. You're solution looks good! However, when I try to apply it to my table, it errors out. Do you see a glaring issue in the attached table? the Phi0, sigma0, and pHf are all the same as before. However, I made a "cyclic categorization" column for the "by" method you mentioned, but then have a "parameter by column". I use the levels of this column to expand parameters by categories. Since :Cyclic Categorization and :Parameter by column are orthogonal (or whatever the correct word is), this should allow the parameters to iterate over the whole curve at slight offsets (pH0 is the x axis), and then I can just put them together again at the end. However, like I said, its failing and only updating one of the levels of the parameters, and not sure why. 

 

Could this be an issue with how the by interacts with parameters expanded by categories? 

Edward Hamer Chandler, Jr.
peng_liu
Level VII

Re: Least squares regression for nonlinear system of equations

You have missing values in Column3, which explains why only one group has result. But the "formula" is not set up as I recommended. I attach test.v2 to illustrate. With this approach, you no longer needs the Phi0, sigma0, and pHf in the middle.

ehchandlerjr
Level V

Re: Least squares regression for nonlinear system of equations

@peng_liu Oh duh. Not sure how I missed that many missing rows. Thanks for noticing that.

 

So maybe I'm misunderstanding, but since pH0 is my x axis, does your solution just mean the by column is the x column? like if you have 100 x values, you have 100 "groups" so to speak? 

 

If so, wouldn't the expanding by columns version be better since you are minimizing the error across multiple points rather than just a self contained minimization for each one? Or is point by point a better way to deal with loss functions? I'm kinda just fitting the matlab code I had to JMP, but don't really have expertise in minimization algorithms, so whatever the best technique is, I'm down for. 

 

P.S. And maybe I didn't make it clear, but there should be a unique set of values of each of the parameters for each pH0 value (which is the dependent variable). Which is why I thought I needed to expand by categories.

 

Thanks!

Edward Hamer Chandler, Jr.
peng_liu
Level VII

Re: Least squares regression for nonlinear system of equations

I see your "formula" column in the original table depends on pH0. But the "formula" column in your test.jmp does not depend on pH0. I guess that is a misunderstand between us. Let me still use your original data, so Phi0, sigma0, pHf depend on pH0, not "Parameter by column".

Let's look at the first three rows:

peng_liu_0-1703037164708.png

Their pH0 = 0.2. Because of that, the formula of the first row can be denoted by:

f1(Phi0_pH0_0.2, sigma0_pH0_0.2, pHf0_pH0_0.2).

The 2nd and 3rd row formulas are:

f2(Phi0_pH0_0.2, sigma0_pH0_0.2, pHf0_pH0_0.2) and

f3(Phi0_pH0_0.2, sigma0_pH0_0.2, pHf0_pH0_0.2). The three rows form Group 1.

Now look at row 4, 5, 6. Their pH0 = 0.3. So the three formulas are:

f1(Phi0_pH0_0.3, sigma0_pH0_0.3, pHf0_pH0_0.3),

f2(Phi0_pH0_0.3, sigma0_pH0_0.3, pHf0_pH0_0.3), and

f3(Phi0_pH0_0.3, sigma0_pH0_0.3, pHf0_pH0_0.3). The three rows form Group 2.

Group1 and Group2 do not share same set of parameters. They are independent. Minimizing errors for Group1 has nothing to do with minimizing errors for Group2. So, we can optimize group by group.

If you keep parameter set in the three intermediate columns as Phi0_pH0_0.2, Phi0_pH0_0.3, Phi0_pH0_0.4, etc. each row sees all of them. You can see that if you run Nonlinear by pH0, and every group will have hundreds parameters listed. But among them, only three are relevant for each row, and every three rows.

What I did is creating three parameters only, inside of the column "formula". I named them paramPhi0, paramSigma0, parampHf. Even there are just three, when we run Nonlinear by "pH0", the platform will create different sets of the three parameters by "pH0". It literally creates those hundreds of parameters for you by "pH0". And each little Nonlinear by pH0 just need to worry about three parameters.

 

David_Burnham
Super User (Alumni)

Re: Least squares regression for nonlinear system of equations

I have some code that I use to model a moisture adsorption process - it seeks equilibrium conditions as described by multiple physical models - I'll see if I can make a generic version of the code that I can share on here.

-Dave
ehchandlerjr
Level V

Re: Least squares regression for nonlinear system of equations

Hi @David_Burnham - yea if you had a generic version of that, that would be extremely helpful.
Edward Hamer Chandler, Jr.

Recommended Articles