cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 
Try the Materials Informatics Toolkit, which is designed to easily handle SMILES data. This and other helpful add-ins are available in the JMP® Marketplace
Choose Language Hide Translation Bar
rariedl
Level I

Joining complex tables

I'm trying to combine a couple of tables together and am having some problems. Basically my data sheets look like the following

 

 

AgeSex
Patient A13M
Patient B15F

 

 Diagnosis

Patient A

Diabetes
Patient AHTN
Patient BAsthma
Patient BHTN
Patient BSepsis

 

I'm trying to make a table to combine the diagnoses with the patient codes (to look like the table below), but each patient diagnosis is represented individually in my current excel format rather than combining each patient with all their diagnoses. Is there an easy way to combine these two tables? Thanks!

 AgeSexDiabetesHTNAsthmaSepsis
Patient A13M1100
Patient B15F0111

 

 

 

 

2 ACCEPTED SOLUTIONS

Accepted Solutions
Jeff_Perkinson
Community Manager Community Manager

Re: Joining complex tables

This is pretty easy to do with a little manipulation using Tables->Split on the Diagnosis table first. You just need to add a third column of 1s that you'll split.

2022-03-02_15-03-38.770.png

Then it's a matter of search and replace the missing values (.) with 0s and use Tables->Join by Patient.

2022-03-02_15-44-09.698.png

-Jeff

View solution in original post

txnelson
Super User

Re: Joining complex tables

Jeff's answer is a great answer.  Here is my version, which uses the JSL created using similar steps that Jeff used, to create the new table

txnelson_0-1646255944836.png

names default to here(1);

dtData = New Table( "The Data",
	Add Rows( 5 ),
	New Column( "Patient ID",
		Character,
		"Nominal",
		Set Values(
			{"Patient A", "Patient A", "Patient B", "Patient B", "Patient B"}
		)
	),
	New Column( "Diagnosis",
		Character( 16 ),
		"Nominal",
		Set Values( {"Diabetes", "HTN", "Asthma", "HTN", "Sepsis"} )
	)
);
dtDemo = New Table( "The Demographics",
	Add Rows( 2 ),
	New Column( "Patient ID",
		Character,
		"Nominal",
		Set Values( {"Patient A", "Patient B"} )
	),
	New Column( "Age", Character( 16 ), "Nominal", Set Values( {"13", "15"} ) ),
	New Column( "Sex", Character( 16 ), "Nominal", Set Values( {"M", "F"} ) )
);

// Create a list with just the Patient IDs
summarize( dtData, theIDs = by( :Patient ID));
// Move it into a data table
dtIDs = New Table("theIDs", invisible, new column("Patient ID", character, values(theIDs)));

// Create a list with just the Diagnoses
summarize( dtData, theDiags = by( :Diagnosis));
// Move it into a data table
dtDiags = New Table("theDiags", invisible, new column("Diagnosis", character, values(theDiags)));

// Create a table with all possible combinations of patients and diagnoses
dtCart = dtIDs << Join( With( dtDiags ), Cartesian Join );

// Cleanup
close( dtIDs, nosave );
close( dtDiags, nosave);

// Add a null diagnosis column
dtCart << New Column("foundDiag", set each value(0));

dtData << New Column("foundDiag", set each value(1));

// Put the tables together
dtCart << Update(
	With( dtData),
	Match Columns( :Patient ID = :Patient ID, :Diagnosis = :Diagnosis )
);

// Split the data into the final form
dtSplit = dtCart << Split(
	Split By( :Diagnosis ),
	Split( :foundDiag ),
	Group( :Patient ID ),
	Sort by Column Property
);

// Make a copy of the demographics data table
dtFinal = dtDemo << subset( selected columns(0), selected rows(0));

// put the demographics file together with the split data table
dtFinal << Update(
	With( dtSplit ),
	Match Columns( :Patient ID = :Patient ID )
);

// Cleanup
close( dtSplit, nosave );
close( dtCart, nosave );

 

Jim

View solution in original post

2 REPLIES 2
Jeff_Perkinson
Community Manager Community Manager

Re: Joining complex tables

This is pretty easy to do with a little manipulation using Tables->Split on the Diagnosis table first. You just need to add a third column of 1s that you'll split.

2022-03-02_15-03-38.770.png

Then it's a matter of search and replace the missing values (.) with 0s and use Tables->Join by Patient.

2022-03-02_15-44-09.698.png

-Jeff
txnelson
Super User

Re: Joining complex tables

Jeff's answer is a great answer.  Here is my version, which uses the JSL created using similar steps that Jeff used, to create the new table

txnelson_0-1646255944836.png

names default to here(1);

dtData = New Table( "The Data",
	Add Rows( 5 ),
	New Column( "Patient ID",
		Character,
		"Nominal",
		Set Values(
			{"Patient A", "Patient A", "Patient B", "Patient B", "Patient B"}
		)
	),
	New Column( "Diagnosis",
		Character( 16 ),
		"Nominal",
		Set Values( {"Diabetes", "HTN", "Asthma", "HTN", "Sepsis"} )
	)
);
dtDemo = New Table( "The Demographics",
	Add Rows( 2 ),
	New Column( "Patient ID",
		Character,
		"Nominal",
		Set Values( {"Patient A", "Patient B"} )
	),
	New Column( "Age", Character( 16 ), "Nominal", Set Values( {"13", "15"} ) ),
	New Column( "Sex", Character( 16 ), "Nominal", Set Values( {"M", "F"} ) )
);

// Create a list with just the Patient IDs
summarize( dtData, theIDs = by( :Patient ID));
// Move it into a data table
dtIDs = New Table("theIDs", invisible, new column("Patient ID", character, values(theIDs)));

// Create a list with just the Diagnoses
summarize( dtData, theDiags = by( :Diagnosis));
// Move it into a data table
dtDiags = New Table("theDiags", invisible, new column("Diagnosis", character, values(theDiags)));

// Create a table with all possible combinations of patients and diagnoses
dtCart = dtIDs << Join( With( dtDiags ), Cartesian Join );

// Cleanup
close( dtIDs, nosave );
close( dtDiags, nosave);

// Add a null diagnosis column
dtCart << New Column("foundDiag", set each value(0));

dtData << New Column("foundDiag", set each value(1));

// Put the tables together
dtCart << Update(
	With( dtData),
	Match Columns( :Patient ID = :Patient ID, :Diagnosis = :Diagnosis )
);

// Split the data into the final form
dtSplit = dtCart << Split(
	Split By( :Diagnosis ),
	Split( :foundDiag ),
	Group( :Patient ID ),
	Sort by Column Property
);

// Make a copy of the demographics data table
dtFinal = dtDemo << subset( selected columns(0), selected rows(0));

// put the demographics file together with the split data table
dtFinal << Update(
	With( dtSplit ),
	Match Columns( :Patient ID = :Patient ID )
);

// Cleanup
close( dtSplit, nosave );
close( dtCart, nosave );

 

Jim