Hi Hemi,
I often use a non-linear model to fit data.  I'll attach a snippet of code with the hope that it will point you in a direction.  I create a formula column and then run a Non_linear Fit.
Fade=Current Data Table();
Fade<<New Column("Stretched Exponential", Numeric, Continuous, Formula(Parameter( {a=1, b=-0.01, c=0.2}, a*exp(b*:Hours^c))));
f=Fade<<Nonlinear(
    Y( :Name("Std Light Output1") ),  //This is our measure of light output for an OLED panel
    X( :Name( "Stretched Exponential" ) ),
    Iteration Limit( 100000 ),
    Unthreaded( 1 ),
    Newton,
    Finish,
    By( :Dev ID ),
    Custom Inverse Prediction( Response( 0.9, 0.95 ),
    Term Value( Hours( . ) ) )
);
f_rep = f <<report;
rep=Report( f[1] )[Outline Box (3)][Table Box(1)] << Make Combined Data Table;
rep=current data table()<<Set Name("MSE Report");
rep=current data table();
rep<<Save(::results || " MSE Report.jmp");
life=Report( f[1] )[Outline Box (6)][Table Box(1)] << Make Combined Data Table;
life<<Current Data Table<<Set Name("Combined Life Predictions");
life=Current Data Table();
life<<New Column("Exp No", character, formula(Substr(  :Dev ID , 1, 10 )));
life<<Save(::results || " Combined T90 Predictions.jmp");
Let me know if you have any questions.
Dave