Your screen capture shows the Residuals by Predicted Plot, I believe, not Studentized residuals or the other plot as stated. (The axis labels were not included.) This plot exhibits no abnormalities. It exhibits high variance for the associated response range so your R square will be small and your tests will have low power.
The Actual by Predicted Plot would show bias in the model if you have lack of fit. (It should also be evident in the residual plots.) This situation might indicate that you have a non-linear effect of a continuous factor and need to add a quadratic term for this factor.
6. The distribution of the residuals is model dependent, so yes, it depends on the terms in the model. It is assumed that the residuals are estimates of the random error in the response but if there is lack of fit then they are a linear combination of the response errors and the model bias.
7. The form of the distribution (normal or other) depends on the nature of the response, an inherent quality. Linear regression assumes that the errors are normally distributed and models them with a normal distribution with a mean = 0 and constant variance. It does not depend on the number of runs in the design. There are other regression methods (e.g., generalized linear models) that can use other distribution models for the errors.
8. I don't understand this question.