You could do a Fit model and adding a local datafilter for your x. Then you can sweep through the x values observing the changes of slope in Fit Model report.
Another idea would be to add a custom binning on x and using this variable with interaction in Fit Model. Then you can see whether the slope changes with the custom bins of X. See script for examples.
Names Default To Here( 1 );
dt = Open( "$SAMPLE_DATA\Big Class.jmp" );
dt << New Column( "Custom Binning[height]",
Numeric,
"Nominal",
Format( "Best", 12 ),
Formula( If( :height < 61.937, 60.937, :height >= 61.937, 61.937, . ) ),
Value Labels( {"." = "Missing", 60.937 = "< 62", 61.937 = "≥ 62"} ),
Use Value Labels( 1 ),
);
dt << Add Properties to Table(
{New Script(
"Fit Model local datafilter",
Fit Model(
Y( :weight ),
Effects( :sex, :height, :sex * :height ),
Personality( "Standard Least Squares" ),
Emphasis( "Effect Leverage" ),
Run(
:weight << {Summary of Fit( 1 ), Analysis of Variance( 1 ),
Parameter Estimates( 1 ), Scaled Estimates( 0 ), Plot Actual by Predicted( 1 ),
Plot Residual by Predicted( 1 ), Plot Studentized Residuals( 0 ),
Plot Effect Leverage( 1 ), Plot Residual by Normal Quantiles( 0 ),
Box Cox Y Transformation( 0 )}
),
Local Data Filter(
Conditional,
Add Filter( columns( :height ), Where( :height >= 56.994 & :height <= 70 ) )
),
SendToReport(
Dispatch(
{"Response weight", "Whole Model"},
"Actual by Predicted Plot",
OutlineBox,
{Close( 1 )}
),
Dispatch(
{"Response weight", "Whole Model"},
"Effect Summary",
OutlineBox,
{Close( 1 )}
),
Dispatch(
{"Response weight", "Whole Model"},
"Lack Of Fit",
OutlineBox,
{Close( 1 )}
),
Dispatch(
{"Response weight", "Whole Model"},
"Residual by Predicted Plot",
OutlineBox,
{Close( 1 )}
),
Dispatch(
{"Response weight", "Whole Model"},
"Summary of Fit",
OutlineBox,
{Close( 1 )}
),
Dispatch(
{"Response weight", "Whole Model"},
"Analysis of Variance",
OutlineBox,
{Close( 1 )}
),
Dispatch(
{"Response weight", "sex"},
"Least Squares Means Table",
OutlineBox,
{Close( 1 )}
)
)
)
), New Script(
"Fit Least Squares",
Fit Model(
Y( :weight ),
Effects(
:sex, :height, :"Custom Binning[height]"n, :sex * :height,
:sex * :"Custom Binning[height]"n, :height * :"Custom Binning[height]"n
),
Personality( "Standard Least Squares" ),
Emphasis( "Effect Leverage" ),
Run(
:weight << {Summary of Fit( 1 ), Analysis of Variance( 1 ),
Parameter Estimates( 1 ), Scaled Estimates( 0 ), Plot Actual by Predicted( 1 ),
Plot Regression( 0 ), Plot Residual by Predicted( 1 ),
Plot Studentized Residuals( 0 ), Plot Effect Leverage( 1 ),
Plot Residual by Normal Quantiles( 0 ), Box Cox Y Transformation( 0 )}
)
)
)}
);
dt << run script( "Fit Model local datafilter" );
Georg