I think you are misunderstanding how D-optimal designs work. D-Optimal designs can only be created for the model that you have specified and are not to "choose runs to skip".
For example, suppose I have 4 factors and wish to fit a model with all main effects and all 2-way interactions. That will give me 11 terms in my model (including the intercept). A D-optimal design will require at least 11 runs (that is the minimum number of runs JMP offers in the design creation process). This is a requirement because The D in D-optimal refers to a determinant of a matrix that needs to be inverted.
Now, if I take that same situation but list all of my 2-way interactions as "If Possible" rather than "Necessary", you will see the minimum number of runs drop to 5 (only intercept and main effects). When doing this you are actually telling JMP to create a Bayesian D-Optimal design. In such a situation you cannot fit the model with main effects and all 2-way interactions. You will need to use something like forward stepwise regression (or some other techniques that JMP offers) to determine which of the 2-way interactions are considered "active".
Now perhaps your question is more about a 16 run D-optimal design that allows estimation of all main effects and all 2-way interactions, but for some reason 3 runs are not completed. For this situation you have 13 runs, which is more than the 11 runs required. Therefore, ordinary least squares regression will work and provide testing for all of the parameters. Unfortunately, the design is not optimal for 13 runs, it is optimal for 16. Therefore, you are likely to have higher multicollinearity of the parameter estimates and more variance of the parameter estimates. This is not a JMP limitation, it is a limitation of least squares regression and not completing the design as originally laid out.
JMP offers alternatives in such situations. You can impute missing values. You can try alternative modeling techniques that handle multicollinearity and missing values differently (PLS, Neural Networks, partition models, etc.). If you go to JMP Pro, you have even MORE options for fitting models to handle these situations differently.
A HUGE caution though, especially when it comes to imputing missing values. If this is a designed experiment, each trial is chosen to have high influence on the results. After all, you are trying to get maximum information for minimal number of data points. I would NOT recommend imputing values for a designed experiment because there is not much data to determine an appropriate structure to accurately impute the values and that "made up" result will have lots of influence on the model.
Dan Obermiller