cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 
  • JMP will suspend normal business operations for our Winter Holiday beginning on Wednesday, Dec. 24, 2025, at 5:00 p.m. ET (2:00 p.m. ET for JMP Accounts Receivable).
    Regular business hours will resume at 9:00 a.m. EST on Friday, Jan. 2, 2026.
  • We’re retiring the File Exchange at the end of this year. The JMP Marketplace is now your destination for add-ins and extensions.

Discussions

Solve problems, and share tips and tricks with other JMP users.
%3CLINGO-SUB%20id%3D%22lingo-sub-879413%22%20slang%3D%22en-US%22%20mode%3D%22UPDATE%22%3ECentrado%20de%20IVs%20en%20regresi%C3%B3n%20solo%20en%20interacci%C3%B3n%3C%2FLINGO-SUB%3E%0A%20%20%3CLINGO-BODY%20id%3D%22lingo-body-879413%22%20slang%3D%22en-US%22%20mode%3D%22UPDATE%22%3E%0A%20%20%20%3CP%3EHe%20le%C3%ADdo%20en%20varios%20lugares%20que%2C%20con%20la%20regresi%C3%B3n%2C%20JMP%20centrar%C3%A1%20las%20variables%20de%20interacci%C3%B3n%20involucradas%2C%20pero%20NO%20centrar%C3%A1%20las%20versiones%20de%20efecto%20simple%20de%20dichas%20variables.%20En%20primer%20lugar%2C%20%C2%BFes%20esto%20cierto%3F%20En%20segundo%20lugar%2C%20de%20ser%20cierto%2C%20%C2%BFc%C3%B3mo%20no%20viola%20el%20requisito%20de%20independencia%20lineal%20de%20la%20regresi%C3%B3n%3F%3CBR%20%2F%3E%3CBR%20%2F%3E%20Por%20ejemplo%2C%3CBR%20%2F%3E%20Y%20%3D%20b0%20%2B%20b1x1%20%2B%20b2c2%20%2B%20b3x1x2%3CBR%20%2F%3E%3CBR%20%2F%3E%20Si%20x1x2%20se%20convierte%20en%20x1'x2'%20porque%20JMP%20centra%20ambos%20s%C3%B3lo%20para%20la%20interacci%C3%B3n%2C%20entonces%20b1%20ya%20no%20es%20la%20estimaci%C3%B3n%20del%20efecto%20de%20x1%20sobre%20Y%20cuando%20x2%20%3D%200%20porque%20el%20t%C3%A9rmino%20de%20interacci%C3%B3n%20ya%20no%20es%200.%20Lo%20mismo%20se%20aplica%20a%20b2.%3CBR%20%2F%3E%3CBR%20%2F%3E%20Dados%20estos%20problemas%2C%20supongo%20que%20no%20entiendo%20bien%20qu%C3%A9%20hace%20realmente%20JMP.%20%C2%BFAlguien%20podr%C3%ADa%20aclararlo%3F%3C%2FP%3E%0A%20%20%3C%2FLINGO-BODY%3E%0A%20%20%3CLINGO-LABS%20id%3D%22lingo-labs-879413%22%20slang%3D%22en-US%22%20mode%3D%22UPDATE%22%3E%0A%20%20%20%3CLINGO-LABEL%3EAn%C3%A1lisis%20y%20modelado%20de%20datos%20b%C3%A1sicos%3C%2FLINGO-LABEL%3E%0A%20%20%3C%2FLINGO-LABS%3E%0A%20%0A%3CLINGO-SUB%20id%3D%22lingo-sub-879432%22%20slang%3D%22en-US%22%20mode%3D%22UPDATE%22%3ERe%3A%20Centrado%20de%20IVs%20en%20regresi%C3%B3n%3C%2FLINGO-SUB%3E%0A%20%20%3CLINGO-BODY%20id%3D%22lingo-body-879432%22%20slang%3D%22en-US%22%20mode%3D%22UPDATE%22%3E%0A%20%20%20%3CP%3EHola%20%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F70134%22%20target%3D%22_blank%22%3E%40Jimvano7%3C%2FA%3E%20%2C%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3E%C2%A1Bienvenido%20a%20la%20comunidad!%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3ELos%20polinomios%20de%20centrado%20o%20los%20efectos%20de%20interacci%C3%B3n%20cambiar%C3%A1n%20el%20valor%20de%20la%20intersecci%C3%B3n%20y%20modificar%C3%A1n%20los%20valores%20de%20los%20coeficientes.%3CBR%20%2F%3E%20En%20su%20ejemplo%2C%20sin%20centrar%2C%20su%20intersecci%C3%B3n%20es%20b0.%3CBR%20%2F%3E%20Si%20ha%20centrado%20X1%20y%20X2%20en%20el%20t%C3%A9rmino%20de%20interacci%C3%B3n%2C%20entonces%20la%20%22nueva%22%20intersecci%C3%B3n%20corresponde%20a%20b0%20%2B%20la%20parte%20contenida%20en%20el%20t%C3%A9rmino%20de%20interacci%C3%B3n%20con%20los%20valores%20medios%20de%20X1%20y%20X2%20y%20el%20coeficiente%20b'3.%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3EConsulte%20en%20%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2FJMP-Knowledge-Base%2FWhy-does-JMP-center-polynomials-in-models-by-default%2Fm-p%2F575394%23U575394%22%20class%3D%22lia-mention-container-editor-message%20lia-img-icon-tkb-thread%20lia-fa-icon%20lia-fa-tkb%20lia-fa-thread%20lia-fa%22%20target%3D%22_blank%22%3E%C2%BFPor%20qu%C3%A9%20JMP%C2%AE%20centra%20polinomios%20en%20los%20modelos%20por%20defecto%3F%3C%2FA%3E%20las%20razones%20detr%C3%A1s%20del%20centrado%20en%20JMP%3A%20%3CSPAN%3Ela%20introducci%C3%B3n%20de%20factores%20C%20ayuda%3C%2FSPAN%3E%20%3CSPAN%3Ea%20reducir%20la%20multicolinealidad%20en%20presencia%20de%20t%C3%A9rminos%20de%20interacci%C3%B3n%20o%20t%C3%A9rminos%20polin%C3%B3micos%20en%20el%20modelo%2C%20lo%20que%20podr%C3%ADa%20hacer%20que%20los%20coeficientes%20de%20los%20t%C3%A9rminos%20sean%20m%C3%A1s%20complejos%20y%20menos%20precisos%20de%20estimar%20(y%20podr%C3%ADa%20generar%20diferencias%20en%20la%20evaluaci%C3%B3n%20de%20la%20significancia%20estad%C3%ADstica).%20Consulte%20%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2FDiscussions%2FStepwise-model-question%2Fm-p%2F591796%23U591796%22%20class%3D%22lia-mention-container-editor-message%20lia-img-icon-forum-thread%20lia-fa-icon%20lia-fa-forum%20lia-fa-thread%20lia-fa%22%20target%3D%22_blank%22%3Ela%20pregunta%20del%20modelo%20Stepwise%3C%2FA%3E%20para%20un%20ejemplo%20pr%C3%A1ctico.%3C%2FSPAN%3E%3C%2FP%3E%20%0A%20%20%20%3CP%3EY%20discusiones%20anteriores%20%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2FDiscussions%2FCentering-polynomials-calculation%2Fm-p%2F809119%23U809119%22%20class%3D%22lia-mention-container-editor-message%20lia-img-icon-forum-thread%20lia-fa-icon%20lia-fa-forum%20lia-fa-thread%20lia-fa%22%20target%3D%22_blank%22%3EC%C3%A1lculo%20de%20polinomios%20de%20centrado%3C%2FA%3E%20e%20%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2FDiscussions%2FIntercept-of-a-parabola%2Fm-p%2F805020%23U805020%22%20class%3D%22lia-mention-container-editor-message%20lia-img-icon-forum-thread%20lia-fa-icon%20lia-fa-forum%20lia-fa-thread%20lia-fa%22%20target%3D%22_blank%22%3EIntersecci%C3%B3n%20de%20una%20par%C3%A1bola%3C%2FA%3E%20para%20m%C3%A1s%20informaci%C3%B3n.%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3EEspero%20que%20esto%20aclare%20la%20situaci%C3%B3n.%3C%2FP%3E%0A%20%20%3C%2FLINGO-BODY%3E%0A%20%0A%20%0A%20%20%3CLINGO-SUB%20id%3D%22lingo-sub-879450%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3ERe%3A%20Centrado%20de%20IVs%20en%20regresi%C3%B3n%3C%2FLINGO-SUB%3E%0A%20%20%3CLINGO-BODY%20id%3D%22lingo-body-879450%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3E%0A%20%20%20%3CP%3EHola%20%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F11568%22%20target%3D%22_blank%22%3E%40Victor_G%3C%2FA%3E%20%2C%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3EGracias%20por%20responder%20y%20me%20disculpo%20por%20no%20haber%20sido%20claro.%20No%20pregunto%20por%20qu%C3%A9%20se%20usar%C3%ADan%20variables%20centradas%20en%20la%20media.%20Lo%20hago%20habitualmente.%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3EMis%20dos%20preguntas%20son%3A%3C%2FP%3E%20%0A%20%20%20%3CP%3E1)%20%C2%BFJMP%20se%20refiere%20a%20los%20IVs%20centrales%20que%20participan%20en%20las%20interacciones%20y%20NO%20a%20las%20versiones%20de%20efecto%20simple%20de%20dichos%20IVs%3F%20Entonces%2C%20usando%20mi%20ejemplo%2C%20X1%20es%20el%20efecto%20simple%20y%20X1'%20est%C3%A1%20en%20la%20interacci%C3%B3n.%3CBR%20%2F%3E%202)%20Y%20si%20as%C3%AD%20lo%20le%C3%AD%2C%20%C2%BFcu%C3%A1les%20son%20los%20significados%20de%20b1%20y%20b2%20ya%20que%20ya%20no%20son%20el%20efecto%20de%20x1%20sobre%20Y%20y%20el%20efecto%20de%20x2%20sobre%20Y%2C%20cuando%20la%20otra%20variable%20es%200%2C%20respectivamente%3F%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3EGracias%2C%3C%2FP%3E%20%0A%20%20%20%3CP%3EJim%3C%2FP%3E%0A%20%20%3C%2FLINGO-BODY%3E%0A%20%0A%20%0A%20%20%3CLINGO-SUB%20id%3D%22lingo-sub-879523%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3ERe%3A%20Centrado%20de%20IVs%20en%20regresi%C3%B3n%3C%2FLINGO-SUB%3E%0A%20%20%3CLINGO-BODY%20id%3D%22lingo-body-879523%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3E%0A%20%20%20%3CP%3EHola%20%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F70134%22%20target%3D%22_blank%22%3E%40Jimvano7%3C%2FA%3E%20%2C%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3ENada%20mejor%20que%20un%20ejemplo%20pr%C3%A1ctico%20para%20ver%20c%C3%B3mo%20funciona%20JMP.%3CBR%20%2F%3E%20He%20preparado%20un%20conjunto%20de%20datos%20con%20dos%20factores%20X1%20y%20X2%2C%20una%20respuesta%20con%20una%20ecuaci%C3%B3n%20de%20superficie%20de%20respuesta%20predeterminada%20Y%20y%20dos%20columnas%20calculadas%20para%20X1%20centrado%20y%20X2%20centrado.%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3EAl%20lanzar%20el%20modelo%20de%20ajuste%20con%20variables%20originales%20y%20un%20modelo%20de%20superficie%20de%20respuesta%2C%20se%20puede%20observar%20que%20JMP%20no%20centra%20las%20variables%20originales%2C%20sino%20que%20lo%20hace%20con%20variables%20involucradas%20en%20t%C3%A9rminos%20de%20interacci%C3%B3n%20o%20polinomiales%3A%3C%2FP%3E%20%0A%20%20%20%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Victor_G_0-1749714569945.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749714569945.png%22%20style%3D%22width%3A%20312px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749714569945.png%22%20style%3D%22width%3A%20312px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749714569945.png%22%20style%3D%22width%3A%20312px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749714569945.png%22%20style%3D%22width%3A%20312px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749714569945.png%22%20style%3D%22width%3A%20312px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749714569945.png%22%20style%3D%22width%3A%20312px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749714569945.png%22%20style%3D%22width%3A%20312px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749714569945.png%22%20style%3D%22width%3A%20312px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749714569945.png%22%20style%3D%22width%3A%20312px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749714569945.png%22%20style%3D%22width%3A%20312px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749714569945.png%22%20style%3D%22width%3A%20312px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749714569945.png%22%20style%3D%22width%3A%20312px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749714569945.png%22%20style%3D%22width%3A%20312px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749714569945.png%22%20style%3D%22width%3A%20312px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749714569945.png%22%20style%3D%22width%3A%20312px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749714569945.png%22%20style%3D%22width%3A%20312px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749714569945.png%22%20style%3D%22width%3A%20312px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749714569945.png%22%20style%3D%22width%3A%20312px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749714569945.png%22%20style%3D%22width%3A%20312px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749714569945.png%22%20style%3D%22width%3A%20312px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749714569945.png%22%20style%3D%22width%3A%20312px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749714569945.png%22%20style%3D%22width%3A%20312px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749714569945.png%22%20style%3D%22width%3A%20312px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749714569945.png%22%20style%3D%22width%3A%20312px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749714569945.png%22%20style%3D%22width%3A%20312px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749714569945.png%22%20style%3D%22width%3A%20312px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749714569945.png%22%20style%3D%22width%3A%20312px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749714569945.png%22%20style%3D%22width%3A%20312px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749714569945.png%22%20style%3D%22width%3A%20312px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F76823i025445910F1A1D7D%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22Victor_G_0-1749714569945.png%22%20alt%3D%22Victor_G_0-1749714569945.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3EAl%20iniciar%20el%20ajuste%20del%20modelo%20con%20variables%20centradas%20y%20un%20modelo%20de%20superficie%20de%20respuesta%2C%20puede%20ver%20que%20las%20estimaciones%20de%20los%20par%C3%A1metros%20son%20las%20mismas%20entre%20Xi%20y%20Xi%20centrado%2C%20la%20intersecci%C3%B3n%20es%20diferente%20pero%20las%20estimaciones%20de%20los%20par%C3%A1metros%20son%20las%20mismas%20que%20antes%3A%3C%2FP%3E%20%0A%20%20%20%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Victor_G_1-1749714745985.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_1-1749714745985.png%22%20style%3D%22width%3A%20310px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_1-1749714745985.png%22%20style%3D%22width%3A%20310px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_1-1749714745985.png%22%20style%3D%22width%3A%20310px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_1-1749714745985.png%22%20style%3D%22width%3A%20310px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_1-1749714745985.png%22%20style%3D%22width%3A%20310px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_1-1749714745985.png%22%20style%3D%22width%3A%20310px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_1-1749714745985.png%22%20style%3D%22width%3A%20310px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_1-1749714745985.png%22%20style%3D%22width%3A%20310px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_1-1749714745985.png%22%20style%3D%22width%3A%20310px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_1-1749714745985.png%22%20style%3D%22width%3A%20310px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_1-1749714745985.png%22%20style%3D%22width%3A%20310px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_1-1749714745985.png%22%20style%3D%22width%3A%20310px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_1-1749714745985.png%22%20style%3D%22width%3A%20310px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_1-1749714745985.png%22%20style%3D%22width%3A%20310px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_1-1749714745985.png%22%20style%3D%22width%3A%20310px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_1-1749714745985.png%22%20style%3D%22width%3A%20310px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_1-1749714745985.png%22%20style%3D%22width%3A%20310px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_1-1749714745985.png%22%20style%3D%22width%3A%20310px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_1-1749714745985.png%22%20style%3D%22width%3A%20310px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_1-1749714745985.png%22%20style%3D%22width%3A%20310px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_1-1749714745985.png%22%20style%3D%22width%3A%20310px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_1-1749714745985.png%22%20style%3D%22width%3A%20310px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_1-1749714745985.png%22%20style%3D%22width%3A%20310px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_1-1749714745985.png%22%20style%3D%22width%3A%20310px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_1-1749714745985.png%22%20style%3D%22width%3A%20310px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_1-1749714745985.png%22%20style%3D%22width%3A%20310px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_1-1749714745985.png%22%20style%3D%22width%3A%20310px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_1-1749714745985.png%22%20style%3D%22width%3A%20310px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_1-1749714745985.png%22%20style%3D%22width%3A%20310px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F76825i555AB99B0A251692%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22Victor_G_1-1749714745985.png%22%20alt%3D%22Victor_G_1-1749714745985.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3ECentrar%20las%20variables%20no%20cambia%20los%20coeficientes%20de%20las%20estimaciones%20del%20efecto%20principal%20correspondientes%20(la%20%22pendiente%22%20es%20la%20misma%20independientemente%20de%20que%20se%20centre%20la%20variable%20o%20no)%2C%20por%20lo%20que%20la%20interpretaci%C3%B3n%20sigue%20siendo%20la%20misma.%3C%2FP%3E%20%0A%20%20%20%3CP%3EEntonces%2C%20creo%20que%20este%20caso%20de%20uso%20y%20demostraci%C3%B3n%20responden%20a%20sus%20dos%20preguntas%20(no%20estoy%20seguro%20de%20entender%20el%20problema%20con%20su%20segunda%20pregunta).%3C%2FP%3E%0A%20%20%3C%2FLINGO-BODY%3E%0A%20%0A%20%0A%20%20%3CLINGO-SUB%20id%3D%22lingo-sub-879679%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3ERe%3A%20Centrado%20de%20IVs%20en%20regresi%C3%B3n%3C%2FLINGO-SUB%3E%0A%20%20%3CLINGO-BODY%20id%3D%22lingo-body-879679%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3E%0A%20%20%20%3CP%3EHola%20%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F11568%22%20target%3D%22_blank%22%3E%40Victor_G%3C%2FA%3E%20%2C%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3EGracias%20por%20responder%20a%20mi%20primera%20pregunta%20y%20por%20crear%20el%20ejemplo.%20El%20problema%20con%20tu%20ejemplo%20es%20que%20tienes%20activada%20la%20opci%C3%B3n%20de%20centrado%20de%20media%20JMP%20al%20incluir%20X1X2%2C%20de%20modo%20que%20la%20media%20JMP%20se%20centra.%20Si%20la%20desactivas%2C%20obtienes%20un%20resultado%20muy%20diferente.%20Aqu%C3%AD%20tienes%20los%20datos%20de%20tu%20conjunto%20de%20datos.%20X1%2C%20X2%20e%20Y%20son%20variables%20continuas.%20X1%20tiene%20una%20media%20de%209%2C886%20y%20X2%20de%201%2C303.%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3E%3CSTRONG%3EVersi%C3%B3n%201.%3C%2FSTRONG%3E%20Con%20la%20opci%C3%B3n%20de%20centrado%20medio%20JMP%20desactivada%20y%20los%20IV%20sin%20procesar%2C%20se%20obtiene%3A%3C%2FP%3E%20%0A%20%20%20%3CTABLE%3E%20%0A%20%20%20%20%3CTHEAD%3E%20%0A%20%20%20%20%20%3CTR%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E%3CSTRONG%3ET%C3%A9rmino%3C%2FSTRONG%3E%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E%3CSTRONG%3EEstimar%3C%2FSTRONG%3E%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E%3CSTRONG%3EError%20est%C3%A1ndar%3C%2FSTRONG%3E%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E%3CSTRONG%3ERelaci%C3%B3n%20t%3C%2FSTRONG%3E%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E%3CSTRONG%3EProb%26gt%3B%7Ct%7C%3C%2FSTRONG%3E%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%3C%2FTR%3E%20%0A%20%20%20%20%3C%2FTHEAD%3E%20%0A%20%20%20%20%3CTBODY%3E%20%0A%20%20%20%20%20%3CTR%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3EInterceptar%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E164.198%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E36.29445%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E4.52%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E0.0001*%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%3C%2FTR%3E%20%0A%20%20%20%20%20%3CTR%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3EX1%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E-50.64385%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E3.103592%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E-16.32%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E%26lt%3B.0001*%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%3C%2FTR%3E%20%0A%20%20%20%20%20%3CTR%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%20style%3D%22%3Btext-align%3Aleft%3Bdirection%3Altr%22%3EX2%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E-14.74154%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E8.796501%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E-1.68%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E0.1058%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%3C%2FTR%3E%20%0A%20%20%20%20%20%3CTR%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3EX1*X2%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E-6.260865%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E0%2C726168%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E-8.62%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E%26lt%3B.0001*%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%3C%2FTR%3E%20%0A%20%20%20%20%3C%2FTBODY%3E%20%0A%20%20%20%3C%2FTABLE%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3E%3CSTRONG%3EVersi%C3%B3n%202.%3C%2FSTRONG%3E%20Con%20la%20opci%C3%B3n%20de%20centrado%20en%20la%20media%20de%20JMP%20activada%20y%20con%20t%C3%A9rminos%20de%20efecto%20simple%20sin%20procesar%20y%20t%C3%A9rminos%20de%20interacci%C3%B3n%20centrados%20en%20la%20media%2C%20obtenemos%3C%2FP%3E%20%0A%20%20%20%3CTABLE%3E%20%0A%20%20%20%20%3CTHEAD%3E%20%0A%20%20%20%20%20%3CTR%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%22200%22%3E%20%3CP%3E%3CSTRONG%3ET%C3%A9rmino%3C%2FSTRONG%3E%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2283%22%3E%20%3CP%3E%3CSTRONG%3EEstimar%3C%2FSTRONG%3E%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2266%22%3E%20%3CP%3E%3CSTRONG%3EError%20est%C3%A1ndar%3C%2FSTRONG%3E%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2253%22%3E%20%3CP%3E%3CSTRONG%3ERelaci%C3%B3n%20t%3C%2FSTRONG%3E%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2263%22%3E%20%3CP%3E%3CSTRONG%3EProb%26gt%3B%7Ct%7C%3C%2FSTRONG%3E%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%3C%2FTR%3E%20%0A%20%20%20%20%3C%2FTHEAD%3E%20%0A%20%20%20%20%3CTBODY%3E%20%0A%20%20%20%20%20%3CTR%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%22200%22%3E%20%3CP%3EInterceptar%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2283%22%3E%20%3CP%3E83.558404%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2266%22%3E%20%3CP%3E35.53908%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2253%22%3E%20%3CP%3E2.35%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2263%22%3E%20%3CP%3E0.0266*%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%3C%2FTR%3E%20%0A%20%20%20%20%20%3CTR%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%22200%22%3E%20%3CP%3EX1%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2283%22%3E%20%3CP%3E-42.48702%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2266%22%3E%20%3CP%3E2.977176%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2253%22%3E%20%3CP%3E-14.27%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2263%22%3E%20%3CP%3E%26lt%3B.0001*%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%3C%2FTR%3E%20%0A%20%20%20%20%20%3CTR%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%22200%22%3E%20%3CP%20style%3D%22%3Btext-align%3Aleft%3Bdirection%3Altr%22%3EX2%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2283%22%3E%20%3CP%3E-76.63734%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2266%22%3E%20%3CP%3E4.675518%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2253%22%3E%20%3CP%3E-16.39%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2263%22%3E%20%3CP%3E%26lt%3B.0001*%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%3C%2FTR%3E%20%0A%20%20%20%20%20%3CTR%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%22200%22%3E%20%3CP%3E(X1-9.88614)*(X2%2B1.30283)%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2283%22%3E%20%3CP%3E-6.260865%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2266%22%3E%20%3CP%3E0%2C726168%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2253%22%3E%20%3CP%3E-8.62%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2263%22%3E%20%3CP%3E%26lt%3B.0001*%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%3C%2FTR%3E%20%0A%20%20%20%20%3C%2FTBODY%3E%20%0A%20%20%20%3C%2FTABLE%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3E%3CSTRONG%3EVersi%C3%B3n%203.%3C%2FSTRONG%3E%20Con%20las%20variables%20centradas%20en%20la%20media%20manualmente%20para%20todas%20las%20variables%20y%20con%20el%20centrado%20en%20la%20media%20JMP%20desactivado.%3C%2FP%3E%20%0A%20%20%20%3CTABLE%3E%20%0A%20%20%20%20%3CTHEAD%3E%20%0A%20%20%20%20%20%3CTR%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%22184%22%3E%20%3CP%3E%3CSTRONG%3ET%C3%A9rmino%3C%2FSTRONG%3E%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2283%22%3E%20%3CP%3E%3CSTRONG%3EEstimar%3C%2FSTRONG%3E%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2266%22%3E%20%3CP%3E%3CSTRONG%3EError%20est%C3%A1ndar%3C%2FSTRONG%3E%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2253%22%3E%20%3CP%3E%3CSTRONG%3ERelaci%C3%B3n%20t%3C%2FSTRONG%3E%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2263%22%3E%20%3CP%3E%3CSTRONG%3EProb%26gt%3B%7Ct%7C%3C%2FSTRONG%3E%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%3C%2FTR%3E%20%0A%20%20%20%20%3C%2FTHEAD%3E%20%0A%20%20%20%20%3CTBODY%3E%20%0A%20%20%20%20%20%3CTR%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%22184%22%3E%20%3CP%3EInterceptar%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2283%22%3E%20%3CP%3E-236.6291%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2266%22%3E%20%3CP%3E19.63316%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2253%22%3E%20%3CP%3E-12.05%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2263%22%3E%20%3CP%3E%26lt%3B.0001*%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%3C%2FTR%3E%20%0A%20%20%20%20%20%3CTR%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%22184%22%3E%20%3CP%3ECentrado%20X1%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2283%22%3E%20%3CP%3E-42.48702%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2266%22%3E%20%3CP%3E2.977176%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2253%22%3E%20%3CP%3E-14.27%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2263%22%3E%20%3CP%3E%26lt%3B.0001*%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%3C%2FTR%3E%20%0A%20%20%20%20%20%3CTR%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%22184%22%3E%20%3CP%3ECentrado%20X2%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2283%22%3E%20%3CP%3E-76.63734%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2266%22%3E%20%3CP%3E4.675518%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2253%22%3E%20%3CP%3E-16.39%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2263%22%3E%20%3CP%3E%26lt%3B.0001*%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%3C%2FTR%3E%20%0A%20%20%20%20%20%3CTR%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%22184%22%3E%20%3CP%3ECentrado%20X1*Centrado%20X2%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2283%22%3E%20%3CP%3E-6.260865%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2266%22%3E%20%3CP%3E0%2C726168%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2253%22%3E%20%3CP%3E-8.62%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2263%22%3E%20%3CP%3E%26lt%3B.0001*%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%3C%2FTR%3E%20%0A%20%20%20%20%3C%2FTBODY%3E%20%0A%20%20%20%3C%2FTABLE%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3EComo%20puede%20ver%2C%20b0%2C%20b1%20y%20b2%20toman%20valores%20diferentes%20entre%20la%20versi%C3%B3n%201%20y%20la%20versi%C3%B3n%202.%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3E%3CSTRONG%3EVersi%C3%B3n%201%3C%2FSTRONG%3E%20%3A%20Dado%20que%20esta%20ecuaci%C3%B3n%20tiene%20un%20t%C3%A9rmino%20de%20interacci%C3%B3n%2C%20el%20significado%20de%20b1%20(-50%2C644)%20y%20la%20prueba%20estad%C3%ADstica%20realizada%20para%20determinar%20su%20significancia%20(H0%20%3D%200)%20se%20relacionan%20con%20la%20influencia%20de%20X1%20sobre%20Y%2C%20**cuando%20X2%20%3D%200**.%20X1%20no%20es%20un%20efecto%20principal%2C%20sino%20un%20efecto%20simple%2C%20condicional%20a%20cuando%20X2%20es%200%20(Jaccard%20y%20Turissi%2C%202003).%20De%20igual%20forma%2C%20b2%20representa%20la%20influencia%20de%20X2%20sobre%20Y%20cuando%20X1%20%3D%200.%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3EAhora%20bien%2C%20cuando%20X2%20en%20el%20t%C3%A9rmino%20de%20efecto%20simple%20es%20bruto%20y%20X2%20en%20el%20t%C3%A9rmino%20de%20interacci%C3%B3n%20es%20bruto%2C%20entonces%20el%20c%C3%A1lculo%20funciona%20perfectamente.%20b1%20es%20el%20efecto%20de%20X1%20sobre%20Y%20cuando%20X2%20es%200.%20Por%20lo%20tanto%2C%20b2X2%20%3D%200%20y%20la%20interacci%C3%B3n%20%3D%200.%20Nos%20queda%20Y%20%3D%20164%2C198%20-%2050%2C644X1%20cuando%20X2%20%3D%200.%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3E%3CSTRONG%3EVersi%C3%B3n%203%3C%2FSTRONG%3E%20%3A%20Si%20consideramos%20el%20centro%20X1%20como%20X1'%20y%20X2%20como%20X2'%20tanto%20para%20el%20t%C3%A9rmino%20de%20efecto%20simple%20como%20para%20el%20t%C3%A9rmino%20de%20interacci%C3%B3n%2C%20entonces%20el%20c%C3%A1lculo%20funciona%20perfectamente.%20b1%20es%20el%20efecto%20de%20X1'%20sobre%20Y%20cuando%20X2'%20es%200%20(cuando%20X2%20es%201%2C303).%20Por%20lo%20tanto%2C%20b2X2'%20%3D%200%20y%20la%20interacci%C3%B3n%20%3D%200.%20Nos%20queda%20Y%20%3D%20-236%2C629%20%2B%20(-42%2C487)X1'%20cuando%20X2'%20%3D%200%2C%20es%20decir%2C%20cuando%20X2%20%3D%201%2C303.%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3E%3CSTRONG%3EVersi%C3%B3n%202%3C%2FSTRONG%3E%20%3A%20Si%20mantenemos%20X1%20y%20X2%20sin%20procesar%20para%20los%20t%C3%A9rminos%20de%20efecto%20simple%20y%20centramos%20el%20t%C3%A9rmino%20de%20interacci%C3%B3n%20usando%20X1'%20y%20X2'%2C%20entonces%20b1%20ya%20no%20representa%20el%20efecto%20de%20X1%20sobre%20Y%20cuando%20X2%20es%200%2C%20ya%20que%20en%20este%20caso%20queda%20Y%20%3D%20b0%20%2B%20b1X1%20%2B%20b3X1'X2'%20o%20Y%20%3D%2083%2C558%20%2B%20(-42%2C487)X1%20%2B%20(-6%2C261)(-1%2C303)X1'.%20En%20este%20caso%2C%20la%20pendiente%20cambia%20de%20%3CSTRONG%3E50%2C644X1%20a%20(-42%2C487)X1%20%2B%20(8%2C158)X1'%3C%2FSTRONG%3E%20.%20Mi%20pregunta%20es%3A%20%C2%BFCu%C3%A1les%20son%20las%20interpretaciones%20de%20b0%2C%20b1%20y%20b2%20en%20esta%20versi%C3%B3n%3F%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3EY%2C%20dado%20que%20X1%20predice%20perfectamente%20X1'%2C%20tenemos%20multicolinealidad%20perfecta.%20Entonces%2C%20%C2%BFpor%20qu%C3%A9%20JMP%20resuelve%20el%20modelo%20en%20la%20versi%C3%B3n%202%20sin%20un%20error%3F%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%0A%20%20%3C%2FLINGO-BODY%3E%0A%20%0A%20%0A%20%20%0A%20%0A%20%0A%20%20%0A%20%0A%20%0A%20%20%3CLINGO-SUB%20id%3D%22lingo-sub-879719%22%20slang%3D%22en-US%22%20mode%3D%22UPDATE%22%3ERe%3A%20Centrado%20de%20IVs%20en%20regresi%C3%B3n%3C%2FLINGO-SUB%3E%0A%20%20%3CLINGO-BODY%20id%3D%22lingo-body-879719%22%20slang%3D%22en-US%22%20mode%3D%22UPDATE%22%3E%0A%20%20%20%3CP%3EHola%20%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F70134%22%20target%3D%22_blank%22%3E%40Jimvano7%3C%2FA%3E%20%2C%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3ELo%20siento%2C%20de%20hecho%20olvid%C3%A9%20desactivar%20la%20opci%C3%B3n%20de%20centrado%20medio%20en%20mis%20pruebas%20de%20modelo.%3CBR%20%2F%3E%20Todav%C3%ADa%20estoy%20confundido%20por%20algunos%20de%20tus%20comentarios%2C%20como%3A%3C%2FP%3E%20%0A%20%20%20%3CBLOCKQUOTE%3E%20%0A%20%20%20%20%3CP%3E%3CSPAN%3EY%2C%20dado%20que%20X1%20predice%20perfectamente%20X1'%2C%20tenemos%20multicolinealidad%20perfecta.%20Entonces%2C%20%C2%BFpor%20qu%C3%A9%20JMP%20resuelve%20el%20modelo%20en%20la%20versi%C3%B3n%202%20sin%20un%20error%3F%3C%2FSPAN%3E%3C%2FP%3E%20%0A%20%20%20%3C%2FBLOCKQUOTE%3E%20%0A%20%20%20%3CP%3E%3CSPAN%3EX1%20y%20X'1%20son%20variables%20del%20modelo%20y%20solo%20se%20utiliza%20una%20ligera%20transformaci%C3%B3n%20para%20pasar%20de%20una%20a%20otra.%20Se%20dar%C3%ADa%20la%20misma%20situaci%C3%B3n%20con%20X1%20y%20X1%2C%20o%20X'1%20y%20X'1%2C%20as%C3%AD%20que%20no%20entiendo%20el%20punto.%3C%2FSPAN%3E%3C%2FP%3E%20%0A%20%20%20%3CP%3E%3CSPAN%3ESe%20trata%20m%C3%A1s%20bien%20de%20una%20cuesti%C3%B3n%20de%20correlaci%C3%B3n%2Fcolinealidad%20entre%20las%20estimaciones%20de%20los%20par%C3%A1metros%20(b0%2C%20b1%2C%20b2...%20y%20b'0%2C%20b'1%2C%20b'2...)%20lo%20que%20podr%C3%ADa%20ser%20un%20problema.%3C%2FSPAN%3E%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3E%3CSPAN%3ERelanzando%20las%20pruebas%2C%20aqu%C3%AD%20hay%20algunos%20resultados%20para%20las%20correlaciones%20estimadas%3A%3C%2FSPAN%3E%3C%2FP%3E%20%0A%20%20%20%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Victor_G_0-1749803372066.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749803372066.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749803372066.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749803372066.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749803372066.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749803372066.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749803372066.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749803372066.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749803372066.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749803372066.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749803372066.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749803372066.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749803372066.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749803372066.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749803372066.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749803372066.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749803372066.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749803372066.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749803372066.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749803372066.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749803372066.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749803372066.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749803372066.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749803372066.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749803372066.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Victor_G_0-1749803372066.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F76889i31E7A6615481FBD6%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22Victor_G_0-1749803372066.png%22%20alt%3D%22Victor_G_0-1749803372066.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%20%0A%20%20%20%3CP%3EA%20la%20izquierda%2C%20la%20versi%C3%B3n%20del%20modelo%20sin%20autocentrado%20de%20polinomios.%20Se%20observan%20valores%20VIF%20elevados%20para%20los%20efectos%20X1%2FX1%C2%B2%20y%20X2.%20Al%20observar%20la%20correlaci%C3%B3n%20de%20las%20estimaciones%2C%20se%20observan%20fuertes%20correlaciones%20entre%20las%20estimaciones%20de%20los%20par%C3%A1metros%20X1%20y%20X1%C2%B2%2C%20X2%20y%20X1*X2%2C%20as%C3%AD%20como%20un%20error%20est%C3%A1ndar%20inflado%20para%20estas%20estimaciones%20de%20los%20par%C3%A1metros%20de%20efectos%20principales.%3CBR%20%2F%3E%3CBR%20%2F%3E%3C%2FP%3E%20%0A%20%20%20%3CP%3EA%20la%20derecha%2C%20versi%C3%B3n%20del%20modelo%20con%20autocentrado%20de%20polinomios.%20Se%20observan%20valores%20VIF%20bajos%2Faceptables%20para%20todos%20los%20efectos%20(%26lt%3B%202)%2C%20e%20incluso%20si%20algunas%20estimaciones%20de%20efectos%20est%C3%A1n%20correlacionadas%2C%20se%20evita%20la%20correlaci%C3%B3n%20trivial%20entre%20las%20estimaciones%20de%20par%C3%A1metros%20(por%20ejemplo%2C%20entre%20las%20estimaciones%20de%20los%20efectos%20X1%20y%20X1%C2%B2).%20El%20autocentrado%20evita%20la%20inflaci%C3%B3n%20de%20las%20estimaciones%20de%20par%C3%A1metros%20que%20comparten%20las%20mismas%20variables%20originales%20(por%20ejemplo%2C%20el%20efecto%20principal%20y%20el%20efecto%20polinomial%20de%20X1).%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3EEstoy%20de%20acuerdo%20en%20que%20la%20interpretaci%C3%B3n%20puede%20ser%20diferente%20en%20estas%20situaciones%20debido%20a%20la%20traducci%C3%B3n%20de%20las%20variables%20transformadas%2C%20ya%20que%20est%C3%A1s%20comparando%20el%20valor%20de%20respuesta%20en%20funci%C3%B3n%20de%20la%20desviaci%C3%B3n%20de%20la%20media%20de%20las%20variables%2C%20y%20no%20en%20funci%C3%B3n%20de%20una%20desviaci%C3%B3n%20de%200.%3CBR%20%2F%3E%20Puede%20encontrar%20algunas%20buenas%20explicaciones%20sobre%20por%20qu%C3%A9%20no%20se%20recomienda%20centrar%20la%20media%20de%20la%20IV%20de%20un%20modelo%3A%20%3CA%20href%3D%22https%3A%2F%2Fstats.stackexchange.com%2Fquestions%2F65898%2Fwhy-could-centering-independent-variables-change-the-main-effects-with-moderatio%22%20target%3D%22_blank%22%20rel%3D%22noopener%20nofollow%20noreferrer%22%3Ehttps%3A%2F%2Fstats.stackexchange.com%2Fquestions%2F65898%2F%C2%BFPor%20qu%C3%A9%20centrar%20las%20variables%20independientes%20podr%C3%ADa%20cambiar%20los%20efectos%20principales%20con%20moderaci%C3%B3n%3F%3C%2FA%3E%3C%2FP%3E%20%0A%20%20%20%3CP%3EEn%20conclusi%C3%B3n%2C%20JMP%20no%20utiliza%20el%20m%C3%A9todo%20IV%20de%20centro%20medio%20para%20mantener%20la%20escala%20original%20y%20la%20interpretaci%C3%B3n%20de%20los%20efectos%2C%20sino%20que%20lo%20hace%20para%20polinomios%20e%20interacciones%20a%20fin%20de%20evitar%20la%20colinealidad%20y%20aumentar%20la%20precisi%C3%B3n%20de%20las%20estimaciones%20de%20sus%20par%C3%A1metros.%20El%20Generador%20de%20Perfiles%20de%20Predicci%C3%B3n%20utiliza%20autom%C3%A1ticamente%20las%20variables%20originales%20para%20comprender%20mejor%20los%20efectos%20de%20las%20variables%20(y%20mantiene%20las%20mismas%20coordenadas%20de%20las%20variables%20independientemente%20del%20efecto).%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3EEspero%20que%20esto%20te%20ayude.%3C%2FP%3E%0A%20%20%3C%2FLINGO-BODY%3E%0A%20%0A%20%0A%20%20%3CLINGO-SUB%20id%3D%22lingo-sub-879721%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3ERe%3A%20Centrado%20de%20IVs%20en%20regresi%C3%B3n%3C%2FLINGO-SUB%3E%0A%20%20%3CLINGO-BODY%20id%3D%22lingo-body-879721%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3E%0A%20%20%20%3CP%3EHola%20%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F70134%22%20target%3D%22_blank%22%3E%40Jimvano7%3C%2FA%3E%20%3A%20Adem%C3%A1s%20de%20los%20muy%20buenos%20puntos%20de%20%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F11568%22%20target%3D%22_blank%22%3E%40Victor_G%3C%2FA%3E%20%2C%20este%20hilo%20puede%20resultar%20%C3%BAtil%3B%3C%2FP%3E%20%0A%20%20%20%3CP%3E%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2FDiscussions%2FIntercept-of-a-parabola%2Fm-p%2F805020%22%20target%3D%22_blank%22%3Ehttps%3A%2F%2Fcommunity.jmp.com%2Ft5%2FDiscussions%2FIntercept-of-a-parabola%2Fmp%2F805020%3C%2FA%3E%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%0A%20%20%3C%2FLINGO-BODY%3E%0A%20%0A%20%0A%20%20%3CLINGO-SUB%20id%3D%22lingo-sub-879749%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3ERe%3A%20Centrado%20de%20IVs%20en%20regresi%C3%B3n%3C%2FLINGO-SUB%3E%0A%20%20%3CLINGO-BODY%20id%3D%22lingo-body-879749%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3E%0A%20%20%20%3CP%3EGracias%20%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F11568%22%20target%3D%22_blank%22%3E%40Victor_G%3C%2FA%3E%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3ES%C3%A9%20c%C3%B3mo%20cambia%20la%20correlaci%C3%B3n%20entre%20variables%20con%20el%20centrado%20en%20la%20media%20y%20cu%C3%A1ndo%20es%20apropiado%20centrar%20o%20no.%20Lo%20que%20desconozco%20es%20la%20interpretaci%C3%B3n%20de%20b0%2C%20b1%20y%20b2%20en%20este%20modelo%20derivado%20de%20JMP%20(versi%C3%B3n%202)%20mencionado%20anteriormente%2C%20cuando%20el%20modelo%20combina%20variables%20brutas%20y%20centradas%20en%20la%20media.%20Su%20respuesta%20no%20parece%20responder%20a%20mi%20pregunta.%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3EEn%20mi%20an%C3%A1lisis%20del%20modelo%20de%20la%20Versi%C3%B3n%202%2C%20pregunt%C3%A9%20sobre%20el%20significado%20de%20b1.%20Demostr%C3%A9%20que%2C%20al%20intentar%20interpretar%20b1%2C%20establecemos%20X2%20%3D%200%2C%20y%20obtenemos%20Y%20%3D%2083%2C558%20%2B%20(-42%2C487)X1%20%2B%20(8%2C158)X1'.%20En%20este%20caso%2C%20b1%20(-42%2C487)%20%3CSTRONG%3ENO%3C%2FSTRONG%3E%20es%20la%20pendiente%20de%20la%20influencia%20de%20X1%20sobre%20Y%20cuando%20X2%20%3D%200.%20En%20cambio%2C%20b1%20no%20parece%20tener%20un%20significado%20interpretable.%20Esta%20misma%20l%C3%B3gica%20se%20aplica%20a%20X2.%20Adem%C3%A1s%2C%20nunca%20hay%20un%20punto%20(en%20su%20conjunto%20de%20datos)%20donde%20X1%2C%20X2%20y%20X1'X2'%20sean%20todos%20iguales%20a%20cero%2C%20por%20lo%20que%20b0%20no%20es%20la%20media%20de%20Y%20cuando%20las%20dos%20VI%20y%20el%20producto%20de%20las%20dos%20VI%20son%20iguales%20a%200.%20Entonces%2C%20%C2%BFqu%C3%A9%20significan%20estos%20tres%20coeficientes%3F%3C%2FP%3E%0A%20%20%3C%2FLINGO-BODY%3E%0A%20%0A%20%0A%20%20%3CLINGO-SUB%20id%3D%22lingo-sub-879764%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3ERe%3A%20Centrado%20de%20IVs%20en%20regresi%C3%B3n%3C%2FLINGO-SUB%3E%0A%20%20%3CLINGO-BODY%20id%3D%22lingo-body-879764%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3E%0A%20%20%20%3CP%3EHola%20%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F70134%22%20target%3D%22_blank%22%3E%40Jimvano7%3C%2FA%3E%20%3A%20A%20prop%C3%B3sito%2C%20he%20estado%20siguiendo%20este%20hilo%20con%20cierto%20inter%C3%A9s%20y%20aqu%C3%AD%20est%C3%A1%20mi%20opini%C3%B3n%3A%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3EComo%20puede%20observar%2C%20la%20interpretaci%C3%B3n%20de%20las%20estimaciones%20de%20los%20par%C3%A1metros%20en%20un%20modelo%20centrado%20en%20la%20media%20es%20dif%C3%ADcil.%20La%20intersecci%C3%B3n%20es%20simplemente%20una%20constante%20para%20garantizar%20un%20ajuste%20por%20m%C3%ADnimos%20cuadrados%2C%20y%20los%20coeficientes%20tampoco%20son%20f%C3%A1ciles%20de%20interpretar.%20Adem%C3%A1s%2C%20muchos%20de%20los%20valores%20p%20correspondientes%20en%20las%20tablas%20(centrados%20en%20la%20media%20y%20no%20centrados%20en%20la%20media)%20ni%20siquiera%20prueban%20la%20misma%20hip%C3%B3tesis.%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3EDicho%20esto%2C%20todas%20las%20predicciones%20son%20las%20mismas%2C%20y%20si%20eres%20cuidadoso%20puedes%20demostrar%20que%20todas%20las%20inferencias%20son%20las%20mismas%20(cuando%20se%20prueban%20las%20mismas%20hip%C3%B3tesis%2C%20los%20valores%20p%2C%20etc.%20son%20id%C3%A9nticos).%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3EPero%2C%20si%20lo%20que%20le%20interesa%20es%20el%20resultado%20mostrado%20y%20desea%20una%20interpretaci%C3%B3n%20f%C3%A1cil%20de%20ese%20resultado%2C%20entonces%20no%20se%20centre.%3C%2FP%3E%0A%20%20%3C%2FLINGO-BODY%3E%0A%20%0A%20%0A%20%20%3CLINGO-SUB%20id%3D%22lingo-sub-879815%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3ERe%3A%20Centrado%20de%20IVs%20en%20regresi%C3%B3n%3C%2FLINGO-SUB%3E%0A%20%20%3CLINGO-BODY%20id%3D%22lingo-body-879815%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3E%0A%20%20%20%3CP%3E%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F7073%22%20target%3D%22_blank%22%3E%40MRB3855%3C%2FA%3E%20%3C%2FP%3E%20%0A%20%20%20%3CP%3ELas%20diferentes%20versiones%20del%20modelo%20(Versiones%201-3)%20no%20comparten%20la%20misma%20hip%C3%B3tesis%20y%20realizan%20predicciones%20diferentes%2C%20como%20mostr%C3%A9%20utilizando%20la%20salida%20de%20JMP%20en%20una%20publicaci%C3%B3n%20anterior.%20En%20las%20versiones%201%20y%203%2C%20las%20hip%C3%B3tesis%20me%20resultan%20claras%20y%20las%20interpretaciones%20de%20los%20coeficientes%20(estimaciones%20de%20los%20par%C3%A1metros)%20tienen%20sentido.%20Adem%C3%A1s%2C%20las%20predicciones%20son%20diferentes%20porque%20las%20preguntas%20que%20se%20responden%20son%20distintas%20entre%20la%20versi%C3%B3n%201%20y%20la%20versi%C3%B3n%203.%20Sin%20embargo%2C%20desconozco%20cu%C3%A1l%20es%20la%20hip%C3%B3tesis%20de%20la%20versi%C3%B3n%202%20(versi%C3%B3n%20de%20JMP%20con%20variables%20brutas%20y%20centradas%20en%20la%20media%20para%20X1%20y%20X2)%2C%20ya%20que%2C%20por%20lo%20que%20s%C3%A9%2C%20los%20coeficientes%20carecen%20de%20significado.%3CBR%20%2F%3E%3CBR%20%2F%3E%20En%20la%20versi%C3%B3n%203%2C%20con%20todas%20las%20variables%20centradas%20en%20la%20media%2C%20todos%20los%20coeficientes%2C%20incluido%20el%20intercepto%2C%20tienen%20significado.%20b0%20no%20es%20simplemente%20una%20constante%20para%20asegurar%20un%20ajuste%20por%20m%C3%ADnimos%20cuadrados.%20Es%20la%20media%20de%20Y%20cuando%20X1'%20es%200%20(en%20la%20media%20de%20X1)%20y%20X2'%20es%200%20(en%20la%20media%20de%20X2).%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3ELa%20%C3%BAnica%20versi%C3%B3n%20que%20no%20tiene%20sentido%20para%20m%C3%AD%20es%20el%20modelo%20intercalado%20derivado%20de%20JMP.%3C%2FP%3E%0A%20%20%3C%2FLINGO-BODY%3E%0A%20%0A%20%0A%20%20%3CLINGO-SUB%20id%3D%22lingo-sub-879835%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3ERe%3A%20Centrado%20de%20IVs%20en%20regresi%C3%B3n%3C%2FLINGO-SUB%3E%0A%20%20%3CLINGO-BODY%20id%3D%22lingo-body-879835%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3E%0A%20%20%20%3CP%3EHola%20%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F70134%22%20target%3D%22_blank%22%3E%40Jimvano7%3C%2FA%3E%20%3A%20Entonces%2C%20si%20expandes%20completamente%20la%20ecuaci%C3%B3n%20en%20funci%C3%B3n%20del%20resultado%20de%20las%20versiones%202%20y%203%2C%20respectivamente%2C%20luego%20re%C3%BAnes%20t%C3%A9rminos%20similares%20y%20simplificas%2C%20%C2%BFno%20obtienes%20la%20misma%20ecuaci%C3%B3n%20que%20la%20versi%C3%B3n%201%3F%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3EY%20es%20f%C3%A1cil%20hacerlo%20sin%20hacerlo%20manualmente%3B%20simplemente%20guarde%20la%20Y%20predicha%20para%20cada%20versi%C3%B3n%20como%20tres%20nuevas%20columnas%20en%20su%20tabla%20de%20datos%20(mediante%20%22Guardar%20columnas%22%20en%20el%20men%C3%BA%20del%20tri%C3%A1ngulo%20rojo%20de%20la%20salida).%20Si%20hace%20esto%2C%20%C2%BFlas%20Y%20predichas%20son%20diferentes%3F%3C%2FP%3E%0A%20%20%3C%2FLINGO-BODY%3E%0A%20%0A%20%0A%20%20%3CLINGO-SUB%20id%3D%22lingo-sub-879836%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3ERe%3A%20Centrado%20de%20IVs%20en%20regresi%C3%B3n%3C%2FLINGO-SUB%3E%0A%20%20%3CLINGO-BODY%20id%3D%22lingo-body-879836%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3E%0A%20%20%20%3CP%3E%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F7073%22%20target%3D%22_blank%22%3E%40MRB3855%3C%2FA%3E%20%2C%3C%2FP%3E%20%0A%20%20%20%3CP%3ELas%20tres%20f%C3%B3rmulas%20para%20las%20tres%20versiones%20del%20modelo%20se%20muestran%20en%20las%20tres%20tablas%20que%20proporcion%C3%A9.%20Todas%20son%20diferentes.%20Las%20copi%C3%A9%20de%20nuevo%20aqu%C3%AD%20para%20ahorrar%20tiempo.%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3E%3CSTRONG%3EVersi%C3%B3n%201.%3C%2FSTRONG%3E%20Con%20la%20opci%C3%B3n%20de%20centrado%20medio%20JMP%20desactivada%20y%20los%20IV%20sin%20procesar%2C%20se%20obtiene%3A%3C%2FP%3E%20%0A%20%20%20%3CTABLE%3E%20%0A%20%20%20%20%3CTHEAD%3E%20%0A%20%20%20%20%20%3CTR%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E%3CSTRONG%3ET%C3%A9rmino%3C%2FSTRONG%3E%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E%3CSTRONG%3EEstimar%3C%2FSTRONG%3E%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E%3CSTRONG%3EError%20est%C3%A1ndar%3C%2FSTRONG%3E%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E%3CSTRONG%3ERelaci%C3%B3n%20t%3C%2FSTRONG%3E%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E%3CSTRONG%3EProb%26gt%3B%7Ct%7C%3C%2FSTRONG%3E%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%3C%2FTR%3E%20%0A%20%20%20%20%3C%2FTHEAD%3E%20%0A%20%20%20%20%3CTBODY%3E%20%0A%20%20%20%20%20%3CTR%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3EInterceptar%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E164.198%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E36.29445%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E4.52%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E0.0001*%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%3C%2FTR%3E%20%0A%20%20%20%20%20%3CTR%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3EX1%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E-50.64385%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E3.103592%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E-16.32%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E%26lt%3B.0001*%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%3C%2FTR%3E%20%0A%20%20%20%20%20%3CTR%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%20style%3D%22%3Btext-align%3Aleft%3Bdirection%3Altr%22%3EX2%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E-14.74154%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E8.796501%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E-1.68%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E0.1058%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%3C%2FTR%3E%20%0A%20%20%20%20%20%3CTR%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3EX1*X2%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E-6.260865%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E0%2C726168%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E-8.62%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%3E%20%3CP%3E%26lt%3B.0001*%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%3C%2FTR%3E%20%0A%20%20%20%20%3C%2FTBODY%3E%20%0A%20%20%20%3C%2FTABLE%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3E%3CSTRONG%3EVersi%C3%B3n%202.%3C%2FSTRONG%3E%20Con%20la%20opci%C3%B3n%20de%20centrado%20en%20la%20media%20de%20JMP%20activada%20y%20con%20t%C3%A9rminos%20de%20efecto%20simple%20sin%20procesar%20y%20t%C3%A9rminos%20de%20interacci%C3%B3n%20centrados%20en%20la%20media%2C%20obtenemos%3C%2FP%3E%20%0A%20%20%20%3CTABLE%3E%20%0A%20%20%20%20%3CTHEAD%3E%20%0A%20%20%20%20%20%3CTR%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%22200%22%3E%20%3CP%3E%3CSTRONG%3ET%C3%A9rmino%3C%2FSTRONG%3E%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2283%22%3E%20%3CP%3E%3CSTRONG%3EEstimar%3C%2FSTRONG%3E%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2266%22%3E%20%3CP%3E%3CSTRONG%3EError%20est%C3%A1ndar%3C%2FSTRONG%3E%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2253%22%3E%20%3CP%3E%3CSTRONG%3ERelaci%C3%B3n%20t%3C%2FSTRONG%3E%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2263%22%3E%20%3CP%3E%3CSTRONG%3EProb%26gt%3B%7Ct%7C%3C%2FSTRONG%3E%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%3C%2FTR%3E%20%0A%20%20%20%20%3C%2FTHEAD%3E%20%0A%20%20%20%20%3CTBODY%3E%20%0A%20%20%20%20%20%3CTR%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%22200%22%3E%20%3CP%3EInterceptar%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2283%22%3E%20%3CP%3E83.558404%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2266%22%3E%20%3CP%3E35.53908%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2253%22%3E%20%3CP%3E2.35%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2263%22%3E%20%3CP%3E0.0266*%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%3C%2FTR%3E%20%0A%20%20%20%20%20%3CTR%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%22200%22%3E%20%3CP%3EX1%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2283%22%3E%20%3CP%3E-42.48702%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2266%22%3E%20%3CP%3E2.977176%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2253%22%3E%20%3CP%3E-14.27%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2263%22%3E%20%3CP%3E%26lt%3B.0001*%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%3C%2FTR%3E%20%0A%20%20%20%20%20%3CTR%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%22200%22%3E%20%3CP%20style%3D%22%3Btext-align%3Aleft%3Bdirection%3Altr%22%3EX2%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2283%22%3E%20%3CP%3E-76.63734%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2266%22%3E%20%3CP%3E4.675518%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2253%22%3E%20%3CP%3E-16.39%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2263%22%3E%20%3CP%3E%26lt%3B.0001*%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%3C%2FTR%3E%20%0A%20%20%20%20%20%3CTR%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%22200%22%3E%20%3CP%3E(X1-9.88614)*(X2%2B1.30283)%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2283%22%3E%20%3CP%3E-6.260865%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2266%22%3E%20%3CP%3E0%2C726168%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2253%22%3E%20%3CP%3E-8.62%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2263%22%3E%20%3CP%3E%26lt%3B.0001*%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%3C%2FTR%3E%20%0A%20%20%20%20%3C%2FTBODY%3E%20%0A%20%20%20%3C%2FTABLE%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3E%3CSTRONG%3EVersi%C3%B3n%203.%3C%2FSTRONG%3E%20Con%20las%20variables%20centradas%20en%20la%20media%20manualmente%20para%20todas%20las%20variables%20y%20con%20el%20centrado%20en%20la%20media%20JMP%20desactivado.%3C%2FP%3E%20%0A%20%20%20%3CTABLE%3E%20%0A%20%20%20%20%3CTHEAD%3E%20%0A%20%20%20%20%20%3CTR%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%22184%22%3E%20%3CP%3E%3CSTRONG%3ET%C3%A9rmino%3C%2FSTRONG%3E%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2283%22%3E%20%3CP%3E%3CSTRONG%3EEstimar%3C%2FSTRONG%3E%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2266%22%3E%20%3CP%3E%3CSTRONG%3EError%20est%C3%A1ndar%3C%2FSTRONG%3E%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2253%22%3E%20%3CP%3E%3CSTRONG%3ERelaci%C3%B3n%20t%3C%2FSTRONG%3E%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2263%22%3E%20%3CP%3E%3CSTRONG%3EProb%26gt%3B%7Ct%7C%3C%2FSTRONG%3E%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%3C%2FTR%3E%20%0A%20%20%20%20%3C%2FTHEAD%3E%20%0A%20%20%20%20%3CTBODY%3E%20%0A%20%20%20%20%20%3CTR%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%22184%22%3E%20%3CP%3EInterceptar%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2283%22%3E%20%3CP%3E-236.6291%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2266%22%3E%20%3CP%3E19.63316%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2253%22%3E%20%3CP%3E-12.05%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2263%22%3E%20%3CP%3E%26lt%3B.0001*%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%3C%2FTR%3E%20%0A%20%20%20%20%20%3CTR%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%22184%22%3E%20%3CP%3ECentrado%20X1%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2283%22%3E%20%3CP%3E-42.48702%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2266%22%3E%20%3CP%3E2.977176%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2253%22%3E%20%3CP%3E-14.27%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2263%22%3E%20%3CP%3E%26lt%3B.0001*%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%3C%2FTR%3E%20%0A%20%20%20%20%20%3CTR%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%22184%22%3E%20%3CP%3ECentrado%20X2%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2283%22%3E%20%3CP%3E-76.63734%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2266%22%3E%20%3CP%3E4.675518%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2253%22%3E%20%3CP%3E-16.39%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2263%22%3E%20%3CP%3E%26lt%3B.0001*%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%3C%2FTR%3E%20%0A%20%20%20%20%20%3CTR%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%22184%22%3E%20%3CP%3ECentrado%20X1*Centrado%20X2%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2283%22%3E%20%3CP%3E-6.260865%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2266%22%3E%20%3CP%3E0%2C726168%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2253%22%3E%20%3CP%3E-8.62%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%20%3CTD%20width%3D%2263%22%3E%20%3CP%3E%26lt%3B.0001*%3C%2FP%3E%20%3C%2FTD%3E%20%0A%20%20%20%20%20%3C%2FTR%3E%20%0A%20%20%20%20%3C%2FTBODY%3E%20%0A%20%20%20%3C%2FTABLE%3E%0A%20%20%3C%2FLINGO-BODY%3E%0A%20%0A%20%0A%20%20%0A%20%0A%20%0A%20%20%3CLINGO-SUB%20id%3D%22lingo-sub-879849%22%20slang%3D%22en-US%22%20mode%3D%22UPDATE%22%3ERe%3A%20Centrado%20de%20IVs%20en%20regresi%C3%B3n%3C%2FLINGO-SUB%3E%0A%20%20%3CLINGO-BODY%20id%3D%22lingo-body-879849%22%20slang%3D%22en-US%22%20mode%3D%22UPDATE%22%3E%0A%20%20%20%3CP%3E%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F7073%22%20target%3D%22_blank%22%3E%40MRB3855%3C%2FA%3E%20%3C%2FP%3E%20%0A%20%20%20%3CP%3EDisculpa%2C%20me%20di%20cuenta%20de%20que%20tambi%C3%A9n%20me%20pediste%20que%20resolviera%20los%20problemas%20para%20simplificarlos.%20Lo%20hice%20en%20mis%20publicaciones%20anteriores.%20En%20resumen%2C%20cuando%20X%C2%B2%20%3D%200%20para%20las%20versiones%201%20y%202%2C%20y%20X%C2%B2'%20%3D%200%20para%20la%20versi%C3%B3n%203.%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3E%3CSTRONG%3EVersi%C3%B3n%201%3A%3C%2FSTRONG%3E%20Y%20%3D%20164%2C198%20-%2050%2C644%20*%20X1%3C%2FP%3E%20%0A%20%20%20%3CP%3E%3CSTRONG%3EVersi%C3%B3n%202%3A%3C%2FSTRONG%3E%20Y%20%3D%2083%2C558%20-%2042%2C487%20*%20X1%20%2B%208%2C158%20*%20X1'%3C%2FP%3E%20%0A%20%20%20%3CP%3E%3CSTRONG%3EVersi%C3%B3n%203%3A%3C%2FSTRONG%3E%20Y%20%3D%20-236%2C629%20-%2042%2C487%20*%20X1'%3C%2FP%3E%0A%20%20%3C%2FLINGO-BODY%3E%0A%20%0A%20%0A%20%20%0A%20%0A%20%0A%20%20%3CLINGO-SUB%20id%3D%22lingo-sub-879882%22%20slang%3D%22en-US%22%20mode%3D%22UPDATE%22%3ERe%3A%20Centrado%20de%20IVs%20en%20regresi%C3%B3n%3C%2FLINGO-SUB%3E%0A%20%20%3CLINGO-BODY%20id%3D%22lingo-body-879882%22%20slang%3D%22en-US%22%20mode%3D%22UPDATE%22%3E%0A%20%20%20%3CP%3EHola%20%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F70134%22%20target%3D%22_blank%22%3E%40Jimvano7%3C%2FA%3E%20.%20Tu%20c%C3%A1lculo%20no%20es%20completo%20ni%20correcto.%20Necesitas%20expandir%20%3CSPAN%3E8.158%20*%20X1%20en%20la%20versi%C3%B3n%202.%3C%2FSPAN%3E%3C%2FP%3E%20%0A%20%20%20%3CP%3E%3CSPAN%3E(donde%20X1'%20%3D%20X1-9.88614)%20y%20ver%C3%A1%20que%20la%20ecuaci%C3%B3n%20en%20la%20versi%C3%B3n%202%20coincide%20exactamente%20con%20la%20ecuaci%C3%B3n%20en%20la%20versi%C3%B3n%201.%3C%2FSPAN%3E%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3E%3CSPAN%3EY%20X2'%20%3D%200%20en%20la%20versi%C3%B3n%203%20no%20es%20correcto%20si%20se%20asume%20que%20X2%20%3D%200.%20Cuando%20X2%20%3D%200%2C%20X2'%20%3D%200%20%2B%201%2C30283%20%3D%201%2C30283.%20Y%2C%20como%20acabo%20de%20describir%20en%20la%20oraci%C3%B3n%20anterior%2C%20tambi%C3%A9n%20hay%20que%20tener%20cuidado%20con%20X1'.%3C%2FSPAN%3E%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3EMultiplica%20%3CI%3Etodo%3C%2FI%3E%20con%20cuidado%20y%20las%20ecuaciones%20en%20las%20versiones%202%20y%203%20coinciden%20exactamente%20con%20la%20ecuaci%C3%B3n%20de%20la%20versi%C3%B3n%201%E2%80%A6%20lo%20prometo%20(lo%20acabo%20de%20hacer%20en%20Excel).%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CBR%20%2F%3E%0A%20%20%3C%2FLINGO-BODY%3E%0A%20%0A%20%0A%20%20%3CLINGO-SUB%20id%3D%22lingo-sub-879936%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3ERe%3A%20Centrado%20de%20IVs%20en%20regresi%C3%B3n%3C%2FLINGO-SUB%3E%0A%20%20%3CLINGO-BODY%20id%3D%22lingo-body-879936%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3E%0A%20%20%20%3CP%3E%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F7073%22%20target%3D%22_blank%22%3E%40MRB3855%3C%2FA%3E%20%3C%2FP%3E%20%0A%20%20%20%3CP%3EParece%20que%20perd%C3%AD%20mi%20respuesta%20por%20alguna%20raz%C3%B3n%3A%20%C2%BFSe%20alcanz%C3%B3%20el%20l%C3%ADmite%20m%C3%A1ximo%20de%20inundaci%C3%B3n%3F%20Lo%20intento%20de%20nuevo...%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3EGracias%20por%20notar%20que%20no%20vi%20el%20signo%20negativo%20en%20la%20media%20de%20X2.%20Dije%20que%20X2'%20%3D%200%20para%20la%20versi%C3%B3n%203%2C%20no%20X2%20%3D%200.%20La%20versi%C3%B3n%203%20es%20correcta%20tal%20como%20estaba.%20Copio%20las%20f%C3%B3rmulas%20aqu%C3%AD%20y%20corrijo%20el%20signo%20(8%2C158%20se%20convierte%20en%20-8%2C158)%20en%20la%20versi%C3%B3n%202.%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3EPara%20resumir%2C%20cuando%20X2%3D0%20para%20las%20versiones%201%20y%202%2C%20y%20X2'%3D0%20para%20la%20versi%C3%B3n%203%2C%20entonces%20nos%20quedamos%20con%3A%3C%2FP%3E%20%0A%20%20%20%3CP%3E%3CSTRONG%3EVersi%C3%B3n%201%3A%3C%2FSTRONG%3E%20Y%20%3D%20164%2C198%20-%2050%2C644%20*%20X1%3C%2FP%3E%20%0A%20%20%20%3CP%3E%3CSTRONG%3EVersi%C3%B3n%202%3A%3C%2FSTRONG%3E%20Y%20%3D%2083%2C558%20-%2042%2C487%20*%20X1%20-%208%2C158%20*%20X1'%3C%2FP%3E%20%0A%20%20%20%3CP%3E%3CSTRONG%3EVersi%C3%B3n%203%3A%3C%2FSTRONG%3E%20Y%20%3D%20-236%2C629%20-%2042%2C487%20*%20X1'%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3EEstoy%20%3CSTRONG%3Etotalmente%20de%20acuerdo%3C%2FSTRONG%3E%20en%20que%20las%20tres%20f%C3%B3rmulas%20producen%20el%20mismo%20valor%20para%20Y%20cuando%20X1%3D0%20y%20X2%3D0.%3C%2FP%3E%20%0A%20%20%20%3CP%3EPero%20esa%20no%20era%20mi%20pregunta.%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3EMi%20pregunta%20es%3A%3C%2FP%3E%20%0A%20%20%20%3CP%3E%3CSTRONG%3E%C2%BFCu%C3%A1l%20es%20el%20significado%20de%20b0%2C%20b1%20y%20b2%20en%20la%20versi%C3%B3n%202%3F%3C%2FSTRONG%3E%3C%2FP%3E%20%0A%20%20%20%3CUL%3E%20%0A%20%20%20%20%3CLI%3ESi%20b1%20(-42%2C487)%20en%20la%20versi%C3%B3n%202%20se%20supone%20que%20representa%20la%20influencia%20de%20X1%20sobre%20Y%20cuando%20X2%20%3D%200%2C%20entonces%20b1%20deber%C3%ADa%20ser%20-50%2C644%2C%20como%20en%20la%20versi%C3%B3n%201.%20La%20%C3%BAnica%20manera%20de%20que%20b1%20en%20la%20versi%C3%B3n%202%20coincida%20con%20b1%20en%20la%20versi%C3%B3n%201%20es%20sumar%20b3X1'.%20Por%20lo%20tanto%2C%20b1%20no%20puede%20representar%20la%20influencia%20de%20X1%20sobre%20Y%20cuando%20X2%20%3D%200.%20Lo%20mismo%20ocurre%20con%20b2.%3C%2FLI%3E%20%0A%20%20%20%20%3CLI%3ESi%20b1%20(-42%2C487)%20en%20la%20versi%C3%B3n%202%20se%20supone%20que%20es%20la%20influencia%20de%20X1'%20sobre%20Y%20cuando%20X2'%20%3D%200%2C%20entonces%20b0%20(intersecci%C3%B3n)%20deber%C3%ADa%20ser%20-236%2C629%2C%20como%20en%20la%20versi%C3%B3n%203.%20La%20%C3%BAnica%20manera%20de%20que%20b0%20en%20la%20versi%C3%B3n%202%20coincida%20con%20b0%20en%20la%20versi%C3%B3n%203%20es%20sumar%20b3X1'.%20Por%20lo%20tanto%2C%20b0%20no%20puede%20ser%20la%20media%20de%20Y%20cuando%20X1'%20%3D%200%20y%20X2'%20%3D%200%2C%20ni%20cuando%20X1%20%3D%200%20y%20X2%20%3D%200.%3C%2FLI%3E%20%0A%20%20%20%3C%2FUL%3E%20%0A%20%20%20%3CP%3EPor%20lo%20tanto%2C%20b0%2C%20b1%20y%20b2%20no%20tienen%20sentido%20en%20mi%20opini%C3%B3n.%20%C2%BFQu%C3%A9%20me%20estoy%20perdiendo%3F%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3EGracias%2C%3C%2FP%3E%20%0A%20%20%20%3CP%3EJim%3C%2FP%3E%0A%20%20%3C%2FLINGO-BODY%3E%0A%20%0A%20%0A%20%20%0A%20%0A%20%0A%20%20%0A%20%0A%20%0A%20%20%0A%20%0A%20%0A%20%20%0A%20%0A%20%0A%20%20%0A%20%0A%20%0A%20%20%3CLINGO-SUB%20id%3D%22lingo-sub-880090%22%20slang%3D%22en-US%22%20mode%3D%22UPDATE%22%3ERe%3A%20Centrado%20de%20IVs%20en%20regresi%C3%B3n%3C%2FLINGO-SUB%3E%0A%20%20%3CLINGO-BODY%20id%3D%22lingo-body-880090%22%20slang%3D%22en-US%22%20mode%3D%22UPDATE%22%3E%0A%20%20%20%3CP%3E%C2%A1Gracias%20%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F7073%22%20target%3D%22_blank%22%3E%40MRB3855%3C%2FA%3E%20y%20%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F11568%22%20target%3D%22_blank%22%3E%40Victor_G%3C%2FA%3E%20por%20sus%20comentarios%20y%20ayuda!%20Aprend%C3%AD%20cosas%20interesantes%20por%20el%20camino.%20Esta%20publicaci%C3%B3n%20es%20una%20edici%C3%B3n%20de%20la%20original.%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3EPara%20resumir%20mi%20pregunta%20original%3A%3C%2FP%3E%20%0A%20%20%20%3CP%3E%3CSTRONG%3E%C2%BFCu%C3%A1les%20son%20los%20significados%20de%20b0%20(intersecci%C3%B3n)%2C%20b1%20y%20b2%20en%20el%20modelo%20entremezclado%20JMP%20creado%20con%20los%20%22polinomios%20centrados%20en%20la%20media%22%20activados%2C%20donde%20solo%20las%20variables%20en%20la%20interacci%C3%B3n%20est%C3%A1n%20centradas%20en%20la%20media%20(versi%C3%B3n%202)%3F%3C%2FSTRONG%3E%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3ELa%20versi%C3%B3n%202%20es%3A%20Y%20%3D%20b0%20%2B%20b1X1%20%2B%20b2X2%20%2B%20b3X1'X2'%2C%20donde%20X1'%20es%20una%20versi%C3%B3n%20centrada%20en%20la%20media%20de%20una%20X1%20continua%20y%20X2'%20es%20una%20versi%C3%B3n%20centrada%20en%20la%20media%20de%20una%20X2%20continua.%20Adem%C3%A1s%2C%20se%20asume%20que%20X1%26lt%3B%26gt%3BX1'%20y%20X2%26lt%3B%26gt%3BX2'.%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3EAqu%C3%AD%20est%C3%A1n%20mis%20respuestas%20hasta%20ahora%20y%20me%20encantar%C3%ADa%20escuchar%20de%20alguien%20si%20lo%20que%20conclu%C3%AD%20es%20incorrecto.%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3E%3CSTRONG%3E%3CU%3Eb0%3A%20la%20salida%20JMP%20denominada%20%22intersecci%C3%B3n%22%20no%20es%20en%20realidad%20la%20intersecci%C3%B3n%3C%2FU%3E%3C%2FSTRONG%3E%20%2C%20que%20se%20define%20por%20numerosas%20fuentes%20como%20el%20valor%20de%20Y%20(%C2%A1no%20la%20media%20de%20Y!)%20cuando%20X1%20y%20X2%20son%20iguales%20a%200%20(por%20ejemplo%2C%20Montgomery%2C%20Peck%20y%20Vining%2C%202001).%3C%2FP%3E%20%0A%20%20%20%3CP%3ECuando%20X1%20%3D%200%20y%20X2%20%3D%200%2C%20el%20coeficiente%20de%20intersecci%C3%B3n%20en%20la%20salida%20no%20es%20la%20intersecci%C3%B3n%2C%20ya%20que%20se%20debe%20sumar%20b0%20%2B%20b3(-media%20de%20X1)(-media%20de%20X2)%20para%20obtener%20la%20intersecci%C3%B3n%20real.%20En%20las%20versiones%201%20y%203%2C%20la%20intersecci%C3%B3n%20es%20la%20intersecci%C3%B3n%20real.%20No%20encuentro%20ning%C3%BAn%20caso%20en%20el%20que%20el%20coeficiente%20de%20intersecci%C3%B3n%20en%20la%20salida%20de%20JMP%20de%20la%20versi%C3%B3n%202%20sea%20la%20intersecci%C3%B3n%20real.%20%C2%BFExiste%20alguno%3F%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3E%3CSTRONG%3E%3CU%3Eb1%3A%20el%20coeficiente%20denominado%20X1%20en%20la%20salida%20de%20JMP%20mide%20la%20influencia%20de%20X1%20en%20Y%20cuando%20X2%20%3D%20media(X2)%2C%20no%20cuando%20X2%20%3D%200%2C%20como%20en%20las%20versiones%201%20y%203.%3C%2FU%3E%3C%2FSTRONG%3E%20Jaccard%20y%20Turrisi%20(2003)%20lo%20definieron%20como%20cuando%20X2%20%3D%200.%20La%20intersecci%C3%B3n%20es%20la%20suma%20b0%20%2B%20b2X2.%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3E%3CSTRONG%3E%3CU%3Eb2%3A%20el%20coeficiente%20denominado%20X2%20en%20la%20salida%20JMP%20es%20la%20medida%20de%20la%20influencia%20de%20X2%20en%20Y%20cuando%20X1%20%3D%20media%20(X1)%2C%20no%20cuando%20X1%20%3D%200%20como%20en%20las%20versiones%201%20y%203.%3C%2FU%3E%3C%2FSTRONG%3E%20La%20%E2%80%9Cintersecci%C3%B3n%E2%80%9D%20es%20la%20suma%20b0%20%2B%20b1X1.%3C%2FP%3E%0A%20%20%3C%2FLINGO-BODY%3E%0A%20%0A%3CLINGO-SUB%20id%3D%22lingo-sub-880093%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3ERe%3A%20Centrado%20de%20IVs%20en%20regresi%C3%B3n%3C%2FLINGO-SUB%3E%0A%20%20%3CLINGO-BODY%20id%3D%22lingo-body-880093%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3E%0A%20%20%20%3CP%3EHola%20%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F70134%22%20target%3D%22_blank%22%3E%40Jimvano7%3C%2FA%3E%20.%20No%20puedo%20hablar%20por%20JMP%20(para%20responder%20a%20tu%20pregunta%20fundamental).%20Pero%E2%80%A6%20tienes%20la%20opci%C3%B3n%20de%20%22centrar%22%20(versi%C3%B3n%202)%20o%20no%20(versi%C3%B3n%201).%3C%2FP%3E%0A%20%20%3C%2FLINGO-BODY%3E%0A%20%0A%20%0A%20%20%3CLINGO-SUB%20id%3D%22lingo-sub-880099%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3ERe%3A%20Centrado%20de%20IVs%20en%20regresi%C3%B3n%20solo%20en%20interacci%C3%B3n%3C%2FLINGO-SUB%3E%0A%20%20%3CLINGO-BODY%20id%3D%22lingo-body-880099%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3E%0A%20%20%20%3CP%3EHola%20%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F70134%22%20target%3D%22_blank%22%3E%40Jimvano7%3C%2FA%3E%20y%20todos%20los%20dem%C3%A1s%3A%3C%2FP%3E%20%0A%20%20%20%3CP%3EEstoy%20entrando%20en%20esta%20respuesta%20un%20poco%20tarde%2C%20as%C3%AD%20que%20disculpen%20si%20no%20respondo%20a%20todas%20las%20partes%20(o%20si%20me%20pierdo%20alg%C3%BAn%20matiz)%2C%20pero%20quer%C3%ADa%20compartir%20una%20respuesta%20(y%20un%20video)%20que%20publiqu%C3%A9%20sobre%20este%20mismo%20tema%20en%20la%20comunidad%20hace%20unos%2010%20a%C3%B1os.%20Hice%20una%20peque%C3%B1a%20demostraci%C3%B3n%20en%20el%20video%20con%20el%20generador%20de%20perfiles%20de%20predicci%C3%B3n%20que%20creo%20que%20ayud%C3%B3%20a%20aclarar%20algunas%20estimaciones.%3C%2FP%3E%20%0A%20%20%20%3CP%3E%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2FDiscussions%2Festimates-in-multipule-regression%2Fm-p%2F10965%2Fhighlight%2Ftrue%23M10565%22%20target%3D%22_blank%22%3Ehttps%3A%2F%2Fcommunity.jmp.com%2Ft5%2FDiscussions%2Festimates-in-multipule-regression%2Fmp%2F10965%2Fhighlight%2Ftrue%23M10565%3C%2FA%3E%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3EY%20aqu%C3%AD%20hay%20un%20enlace%20directo%20a%20ese%20v%C3%ADdeo%3A%3C%2FP%3E%20%0A%20%20%20%3CP%3E%3CA%20href%3D%22https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DLLh1V9MtKvs%22%20target%3D%22_blank%22%20rel%3D%22nofollow%20noopener%20noreferrer%22%3Ehttps%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DLLh1V9MtKvs%3C%2FA%3E%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3E%C2%A1Espero%20que%20esto%20ayude!%3C%2FP%3E%20%0A%20%20%20%3CP%3E%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F2026%22%20target%3D%22_blank%22%3E%40juliano%3C%2FA%3E%20%3C%2FP%3E%0A%20%20%3C%2FLINGO-BODY%3E%0A%20%0A%20%0A%20%20%3CLINGO-SUB%20id%3D%22lingo-sub-880100%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3ERe%3A%20Centrado%20de%20IVs%20en%20regresi%C3%B3n%20solo%20en%20interacci%C3%B3n%3C%2FLINGO-SUB%3E%0A%20%20%3CLINGO-BODY%20id%3D%22lingo-body-880100%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3E%0A%20%20%20%3CP%3E%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F2026%22%20target%3D%22_blank%22%3E%40juliano%3C%2FA%3E%20%3C%2FP%3E%20%0A%20%20%20%3CP%3EGracias%20Juli%C3%A1n.%20Muy%20%C3%BAtil.%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3E%C2%BFQu%C3%A9%20significa%20la%20intersecci%C3%B3n%20si%20nunca%20es%20realmente%20la%20intersecci%C3%B3n%3F%20En%20todos%20los%20casos%20que%20revis%C3%A9%2C%20se%20tuvo%20que%20a%C3%B1adir%20alg%C3%BAn%20otro%20valor%20al%20coeficiente%20de%20intersecci%C3%B3n%20para%20obtener%20la%20intersecci%C3%B3n%20real.%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3EGracias%2C%3C%2FP%3E%20%0A%20%20%20%3CP%3E%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F70134%22%20target%3D%22_blank%22%3E%40Jimvano7%3C%2FA%3E%20%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%0A%20%20%3C%2FLINGO-BODY%3E%0A%20%0A%20%0A%20%20%0A%20%0A%20%0A%20%20%3CLINGO-SUB%20id%3D%22lingo-sub-880180%22%20slang%3D%22en-US%22%20mode%3D%22UPDATE%22%3ERe%3A%20Centrado%20de%20IVs%20en%20regresi%C3%B3n%20solo%20en%20interacci%C3%B3n%3C%2FLINGO-SUB%3E%0A%20%20%3CLINGO-BODY%20id%3D%22lingo-body-880180%22%20slang%3D%22en-US%22%20mode%3D%22UPDATE%22%3E%0A%20%20%20%3CP%3ELa%20intersecci%C3%B3n%20siempre%20representa%20una%20variaci%C3%B3n%20de%20la%20posici%C3%B3n%20de%20la%20l%C3%ADnea%20(o%20plano%20de%20regresi%C3%B3n%20en%20modelos%20con%20m%C3%A1s%20de%20un%20t%C3%A9rmino)%20en%20el%20eje%20Y%20cuando%20los%20dem%C3%A1s%20coeficientes%20no%20contribuyen%20en%20nada%20(es%20decir%2C%20se%20establecen%20en%200).%20Al%20centrar%20%C3%BAnicamente%20el%20t%C3%A9rmino%20de%20interacci%C3%B3n%2C%20la%20ausencia%20de%20efectos%20principales%20adquiere%20un%20significado%20diferente.%20No%20num%C3%A9ricamente%2C%20sino%20que%20siempre%20hablamos%20de%200%20para%20cada%20predictor%2C%20pero%20lo%20que%20ese%20cero%20indica%20en%20la%20poblaci%C3%B3n%20cambia%20porque%20al%20centrar%20la%20interacci%C3%B3n%20en%20la%20media%2C%20el%20%3CEM%3Eefecto%20de%20interacci%C3%B3n%20cero%3C%2FEM%3E%20se%20desplaza%20al%20comportamiento%20promedio%20de%20la%20poblaci%C3%B3n%2C%20no%20al%20punto%20de%20origen%20literal%20(0%2C0)%20de%20los%20predictores.%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3EEn%20resumen%2C%20en%20un%20modelo%20como%20este%2C%20la%20intersecci%C3%B3n%20es%20m%C3%A1s%20bien%20una%20estimaci%C3%B3n%20en%20un%20an%C3%A1lisis%20de%20covarianza%2C%20una%20estimaci%C3%B3n%20ajustada%20basada%20en%20la%20eliminaci%C3%B3n%2C%20estad%C3%ADsticamente%2C%20del%20efecto%20promedio%20de%20la%20interacci%C3%B3n%20del%20plano.%20No%20encuentro%20esa%20explicaci%C3%B3n%20particularmente%20%C3%BAtil%20conceptualmente%2C%20as%C3%AD%20que%2C%20si%20me%20lo%20permiten%2C%20la%20explicar%C3%A9%20con%20el%20ejemplo%20que%20us%C3%A9%20antes.%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3ESiempre%20me%20resulta%20%C3%BAtil%20ver%20estas%20cosas%20visualmente.%20Aqu%C3%AD%20est%C3%A1%20el%20ejemplo%20que%20us%C3%A9%20antes.%20Veamos%20los%20planos%20de%20regresi%C3%B3n%20(que%20ser%C3%A1n%20los%20mismos)%20para%20el%20modelo%20polinomial%20centrado%20(izquierda)%20y%20el%20modelo%20no%20centrado%20(derecha).%20He%20a%C3%B1adido%20una%20cuadr%C3%ADcula%20de%20respuesta%20en%2050%20para%20ambos%20(que%20es%20la%20intersecci%C3%B3n%20del%20modelo%20centrado).%20Tambi%C3%A9n%20he%20colocado%20puntos%20azules%20para%20indicar%20d%C3%B3nde%20est%C3%A1n%20las%20intersecciones%20de%20los%20modelos.%3C%2FP%3E%20%0A%20%20%20%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22julian_0-1750158572294.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22julian_0-1750158572294.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F77002i126E119911746859%2Fimage-size%2Flarge%3Fv%3Dv2%26amp%3Bpx%3D999%22%20role%3D%22button%22%20title%3D%22julian_0-1750158572294.png%22%20alt%3D%22julian_0-1750158572294.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3EEmpezando%20por%20la%20%3CEM%3Ederecha%3C%2FEM%3E%20%2C%20la%20intersecci%C3%B3n%20tiene%20una%20interpretaci%C3%B3n%20muy%20sencilla.%20Es%20el%20valor%20de%20Y%20donde%20el%20plano%20de%20respuesta%20corta%20a%200%20tanto%20para%20X1%20como%20para%20X2.%20Es%20decir%2C%20cuando%20hay%200%20horas%20de%20estudio%20y%200%20conocimientos%20previos.%20F%C3%A1cil.%20(Importante%20para%20m%C3%A1s%20adelante%3A%20ni%20siquiera%20estamos%20considerando%20el%20t%C3%A9rmino%20de%20interacci%C3%B3n%20aqu%C3%AD%2C%20ya%20que%20en%20este%20tipo%20de%20modelo%2C%20cuando%20X1%20%3D%200%20y%20X2%20%3D%200%2C%20sabemos%20que%20la%20interacci%C3%B3n%20no%20suma%20nada%20porque%20el%20coeficiente%20b3%20se%20multiplica%20por%20ceros).%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3EPara%20el%20modelo%20centrado%20a%20la%20izquierda%2C%20la%20intersecci%C3%B3n%20del%20modelo%20de%2050%20est%C3%A1%20muy%20por%20encima%20del%20valor%20cuando%20hay%200%20de%20ambas%20X.%20Pero%20%C2%BFpor%20qu%C3%A9%20el%20aumento%20de%20aproximadamente%2020%20puntos%20en%20el%20examen%3F%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3EUna%20puntuaci%C3%B3n%20de%2050%20indica%20aproximadamente%2040%20de%20conocimientos%20previos%20y%200%20horas%20de%20estudio%3B%20o%20bien%2C%200%20de%20conocimientos%20previos%20y%204%20horas%20de%20estudio.%20Aqu%C3%AD%20he%20activado%20las%20cuadr%C3%ADculas%20de%20valores%20para%20que%20puedan%20verlas%20alineadas%20con%20los%20puntos%20azules%20que%20introduje%20antes%3A%3C%2FP%3E%20%0A%20%20%20%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22julian_2-1750158949377.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22julian_2-1750158949377.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F77004i96CA2B1373F4225F%2Fimage-size%2Flarge%3Fv%3Dv2%26amp%3Bpx%3D999%22%20role%3D%22button%22%20title%3D%22julian_2-1750158949377.png%22%20alt%3D%22julian_2-1750158949377.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3EEntonces%2C%20%C2%BFqu%C3%A9%20ocurre%3F%20Sabemos%20que%20estas%20no%20son%20las%20medias%20de%20Conocimientos%20Previos%20ni%20Horas%20de%20Estudio%2C%20por%20lo%20que%20no%20es%20tan%20sencillo%20como%20mantener%20una%20variable%20constante%20y%20la%20otra%20en%20su%20media.%20Algo%20que%20podr%C3%ADa%20llamar%20la%20atenci%C3%B3n%20aqu%C3%AD%20es%20que%20estos%20puntos%20est%C3%A1n%20a%20una%20distancia%20sim%C3%A9trica%20en%20el%20plano%20de%20respuesta%20desde%20la%20intersecci%C3%B3n%20%22verdadera%22%20(X1%3D0%20y%20X2%3D0).%20Y%20el%20%C3%BAnico%20t%C3%A9rmino%20en%20nuestro%20modelo%20que%20ejerce%20una%20influencia%20sim%C3%A9trica%20(en%20sentido%20de%20escala)%20sobre%20Y%20en%20los%20factores%20X1%20y%20X2%20es%20b3%2C%20el%20t%C3%A9rmino%20de%20interacci%C3%B3n.%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3ELo%20que%20a%C3%BAn%20no%20consideramos%20es%20establecer%20el%20t%C3%A9rmino%20de%20*interacci%C3%B3n*%2C%20B3%2C%20en%200.%20Y%20ese%20cero%20ocurre%20en%20un%20punto%20diferente%20en%20un%20modelo%20como%20este%20que%20donde%20X1%20y%20X2%20son%200%20(debido%20a%20ese%20centrado)%3B%20ocurre%20en%20la%20media%20de%20X1%20y%20X2%2C%20por%20lo%20que%20hablamos%20de%20una%20interacci%C3%B3n%20*promedio*.%20El%20intercepto%20de%2050%20refleja%20una%20especie%20de%20l%C3%ADnea%20base%20ajustada%3A%20es%20lo%20que%20obtendr%C3%ADamos%20(X1%20%3D%200%20o%20X2%20%3D%200)%20si%20no%20hubiera%20efecto%20de%20interacci%C3%B3n%20%3CEM%3Een%20la%20poblaci%C3%B3n%3C%2FEM%3E%20.%20Conceptualmente%2C%20una%20estimaci%C3%B3n%20del%20intercepto%20ajustada%20a%20la%20presencia%20de%20la%20interacci%C3%B3n.%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3EEn%20mi%20opini%C3%B3n%2C%20este%20t%C3%A9rmino%20se%20resiste%20a%20una%20interpretaci%C3%B3n%20conceptual%20mucho%20m%C3%A1s%20que%20cualquier%20intersecci%C3%B3n%20t%C3%ADpica%2C%20pero%20as%C3%AD%20es%20como%20lo%20formular%C3%ADa%20en%20este%20caso%3A%20con%20el%20coeficiente%20negativo%20del%20t%C3%A9rmino%20de%20interacci%C3%B3n%2C%20sabemos%20que%20estos%20factores%20interact%C3%BAan%20%3CEM%3Ede%20forma%20antag%C3%B3nica%3C%2FEM%3E%20(un%20mayor%20nivel%20de%20uno%20disminuye%20la%20fuerza%20de%20la%20relaci%C3%B3n%20entre%20la%20respuesta%20Y%20y%20el%20otro%20factor).%20Es%20decir%2C%20cuanto%20m%C3%A1s%20saben%20las%20personas%20de%20antemano%2C%20menos%20valor%20obtienen%20del%20estudio%20en%20promedio.%20O%20bien%2C%20cuanto%20m%C3%A1s%20estudian%20las%20personas%2C%20menos%20valor%20obtienen%20en%20promedio%20de%20lo%20que%20saben.%20%3CSTRONG%3ELa%20intersecci%C3%B3n%20en%20este%20modelo%20intenta%20indicarnos%20c%C3%B3mo%20ser%C3%ADan%20las%20calificaciones%20de%20los%20ex%C3%A1menes%20*si%20ese%20%3CEM%3Eno%3C%2FEM%3E%20fuera%20el%20caso*.%3C%2FSTRONG%3E%20Si%20esa%20interacci%C3%B3n%20no%20fuera%20el%20estado%20del%20mundo%20que%20medimos%2C%20entonces%20las%20personas%20que%20estudiaron%200%20horas%20habr%C3%ADan%20obtenido%20%3CEM%3Em%C3%A1s%20valor%20de%20sus%20conocimientos%20previos%20y%2C%3C%2FEM%3E%20por%20lo%20tanto%2C%20obtendr%C3%ADan%20mejores%20resultados%20en%20el%20examen%2C%20un%20aumento%20de%20una%20intersecci%C3%B3n%20de%2030%20a%2050.%20Y%20si%20esa%20interacci%C3%B3n%20no%20fuera%20el%20estado%20del%20mundo%20que%20medimos%2C%20entonces%20las%20personas%20que%20ten%C3%ADan%200%20conocimientos%20previos%20habr%C3%ADan%20obtenido%20%3CEM%3Em%C3%A1s%20valor%20de%20su%20estudio%3C%2FEM%3E%20%2C%20de%20ah%C3%AD%20ese%20mismo%20aumento%20de%20la%20intersecci%C3%B3n%20de%2030%20a%2050.%20Al%20igual%20que%20un%20ANCOVA%2C%20este%20es%20un%20experimento%20mental%20estad%C3%ADstico%20%22como%20si%22.%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3E%C2%A1Espero%20que%20esto%20ayude!%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%20%0A%20%20%20%3CP%3EJulio%3C%2FP%3E%20%0A%20%20%20%3CBR%20%2F%3E%0A%20%20%3C%2FLINGO-BODY%3E
Choose Language Hide Translation Bar
Jimvano7
Level III

Centering IVs in regression only in interaction

I have read in several places that with regression, JMP will mean center IVs that are involved in interactions but it will NOT center the simple effect versions of those IVs? First, is this true? Second, if true, how does this not violate the linear independence requirement of regression?

For example,
Y = b0 + b1x1 + b2c2 + b3x1x2

If x1x2 is made into x1'x2' because JMP centers both only for the interaction, then b1 is no longer the estimate of the effect of x1 on Y when x2 = 0 because the interaction term is no longer 0. The same is true of b2.

Given these problems, I assume I am misunderstanding what JMP is really doing. Can anyone clarify?

19 REPLIES 19
Jimvano7
Level III

Re: Centering IVs in rrgression

@MRB3855 ,

The three formulas for the three different model versions are shown in the three tables I provided. All three are different. I copied them again here to save time.

 

Version 1. With the JMP mean centering option turned off and raw IVs you get:

Term

Estimate

Std Error

t Ratio

Prob>|t|

Intercept

164.198

36.29445

4.52

0.0001*

X1

 -50.64385

3.103592

 -16.32

<.0001*

X2

 -14.74154

8.796501

 -1.68

0.1058

X1*X2

 -6.260865

0.726168

 -8.62

<.0001*

 

Version 2. With JMP mean centering option turned on and with raw simple effect terms and mean-centered interaction terms, we get

Term

Estimate

Std Error

t Ratio

Prob>|t|

Intercept

83.558404

35.53908

2.35

0.0266*

X1

 -42.48702

2.977176

 -14.27

<.0001*

X2

 -76.63734

4.675518

 -16.39

<.0001*

(X1-9.88614)*(X2+1.30283)

 -6.260865

0.726168

 -8.62

<.0001*

 

Version 3. With your manually mean-centered variables for all variables and with JMP mean centering turned off.

Term

Estimate

Std Error

t Ratio

Prob>|t|

Intercept

 -236.6291

19.63316

 -12.05

<.0001*

Centered X1

 -42.48702

2.977176

 -14.27

<.0001*

Centered X2

 -76.63734

4.675518

 -16.39

<.0001*

Centered X1*Centered X2

 -6.260865

0.726168

 -8.62

<.0001*

Jimvano7
Level III

Re: Centering IVs in rrgression

@MRB3855 

Sorry, I realized you also asked me to work through the problems to simplify.  I did this in my earlier posts. To summarize, when X2=0 for Version 1 and 2, and X2'=0 for Version 3.

 

Version 1: Y = 164.198 - 50.644 * X1

Version 2: Y = 83.558 - 42.487 * X1 + 8.158 * X1'

Version 3: Y = -236.629 - 42.487 * X1'

MRB3855
Super User

Re: Centering IVs in rrgression

Hi @Jimvano7 . Your arithmetic is not complete and correct. You need to expand 8.158 * X1' in version 2

( where X1’ = X1-9.88614 )  and you will see the equation in version 2 matches the equation in version 1 exactly.

 

And X2’ = 0 in version 3 is not correct if you are assuming X2 = 0. When X2 = 0, X2’ = 0 + 1.30283 = 1.30283. And, as I’ve just described in the sentence above, you have to be careful with X1’ as well. 

 

Carefully multiply everything out and the equations in versions 2 and 3 match the equation in version 1 exactly…I promise (I just did it in excel).

 

 

Jimvano7
Level III

Re: Centering IVs in rrgression

@MRB3855 

I appear to have lost my reply for some reason - Maximum flood limit reached???. Trying again...

 

Thank you for noticing that I missed the negative sign on the mean for X2!!! And, I said X2’ = 0 for Version 3, not X2=0. Version 3 is correct as it was. I am copying the formulas here and correcting the sign (8.158 becomes -8.158) on Version 2.

 

To summarize, when X2=0 for Version 1 and 2, and X2'=0 for Version 3, then we are left with:

Version 1: Y = 164.198 - 50.644 * X1

Version 2: Y = 83.558 - 42.487 * X1 - 8.158 * X1'

Version 3: Y = -236.629 - 42.487 * X1'

 

I totally agree that all three formulas produce the same value for Y when X1=0 and X2=0. 

But, this wasn't my question. 

 

My question is:

What is the meaning of b0, b1, and b2 in Version 2?

  • If b1 (-42.487) in Version 2 is supposed to be the influence of X1 on Y when X2 = 0, then b1 should be -50.644 as in Version 1. The only way to get b1 in Version 2 to match b1 in Version 1 is to add b3X1’. So, b1 cannot be the influence of X1 on Y when X2 = 0.  Same holds for b2.
  • If b1 (-42.487) in Version 2 is supposed to be the influence of X1' on Y when X2' = 0, then b0 (intercept) should be -236.629 as in Version 3. The only way to get b0 in Version 2 to match b0 in Version 3 is to add b3X1’. So, b0 cannot be the mean of Y when X1' = 0 and X2' = 0, or when X1 = 0 and X2 = 0.

Therefore, b0, b1, and b2 are not meaningful IMO.  What am I missing???

 

Thanks,

Jim

Jimvano7
Level III

Re: Centering IVs in rrgression

Thanks @MRB3855 and @Victor_G for your comments and help! I learned some interesting things along the way. This is edited from the original post.

 

To summarize my original question:

What are the meanings of b0 (intercept), b1, and b2 in the JMP intermixed model created with "mean-centering polynomials" turned on where only the variables in the interaction are mean centered (Version 2)?

 

Version 2 is: Y = b0 + b1X1 + b2X2 +b3X1'X2', where X1' is a mean centered version of a continuous X1 and X2' is a mean centered version of a continuous X2. Further, I assume X1<>X1' and X2<>X2'. 

 

Here are my answers so far and I would love to hear from anyone if what I concluded is wrong.

 

b0: the JMP output labeled "intercept" is not actually the intercept, which is defined by numerous sources as the value of Y (not mean of Y!) when X1 and X2 are equal to 0 (e.g., Montgomery, Peck, & Vining, 2001). 

When X1=0 and X2=0, then the intercept coefficient in the output is not the intercept because one must sum b0 + b3(-mean of X1)(-mean of X2) to get the true intercept. Under both Versions 1 and 3, the intercept is the true intercept. I can find no situation where the “intercept” coefficient in the Version 2 JMP output is the actual intercept. Is there one?

 

b1: the coefficient labeled X1 in the JMP output is the measure of the influence of X1 on Y when X2=mean(X2), not when X2=0 as in Versions 1 and 3.  Jaccard & Turrisi (2003) defined it as when X2=0. The “intercept” is the sum b0 + b2X2.

 

b2: the coefficient labeled X2 in the JMP output is the measure of the influence of X2 on Y when X1 = mean(X1), not when X1 = 0 as in Versions 1 and 3.  The “intercept” is the sum b0 + b1X1.

MRB3855
Super User

Re: Centering IVs in rrgression

Hi @Jimvano7  . I can’t speak for JMP (to answer your fundamental question). But…you do have a choice to “mean center” (version 2) or not (version 1).

MRB3855
Super User

Re: Centering IVs in rrgression

Hi @Jimvano7 : In addition to @Victor_G  's very good points, this thread may prove helpful;

https://community.jmp.com/t5/Discussions/Intercept-of-a-parabola/m-p/805020

 

julian
Community Manager Community Manager

Re: Centering IVs in regression only in interaction

Hi @Jimvano7, and everyone else,

I am wading into this answer a bit late so forgive me for not responding to all the pieces (or for missing some nuance), but I wanted to offer up an answer (and video) I gave on this same topic on the community about 10 years ago. I did a little demonstration in the video with the prediction profiler that I think helped make some of the estimates clear. 

https://community.jmp.com/t5/Discussions/estimates-in-multipule-regression/m-p/10965/highlight/true#...

 

And here is a direct link to that video:

https://www.youtube.com/watch?v=LLh1V9MtKvs

 

I hope this helps!

@julian 

From a user community question about the effect of centering variables in multiple regression
Jimvano7
Level III

Re: Centering IVs in regression only in interaction

@julian 

Thanks Julian.  Very helpful.

 

What is the meaning of the intercept when it is never truly the intercept? In every case I looked at, some other value had to be added to the "intercept" coefficient to get the actual intercept. 

 

Thanks,

@Jimvano7 

 

julian
Community Manager Community Manager

Re: Centering IVs in regression only in interaction

The intercept is always some variation of where the line (or plane of regression in models with more than a single term) is on the Y axis when the other coefficients contribute nothing (i.e. are set to 0). When we center just the interaction term, "nothing" of the main effects takes on a changed meaning. Not numerically, we're always still talking about 0 of each predictor, but what that zero is pointing at in the population is changing because mean-centering the interaction shifts the zero interaction effect to the average behavior in the population, not the literal origin point (0,0) of the predictors.

 

In short, in a model like this, the intercept is more like an estimate in an analysis of covariance, an adjusted estimate based on removing, statistically, the average effect of the interaction from the plane. I don't find that explanation particularly helpful conceptually, so if you'll allow it, I'm going going to talk it through with the example I used before. 

 

I always find it helpful to see these things visually. Here's that example I used before, and let's look at the regression planes (which will be the same) for the centered polynomial model (left) and the uncentered model (right). I've added in a response grid at 50 for both (which is the intercept of the centered model). I have also put blue dots to show where the intercepts of the models are

julian_0-1750158572294.png

 

Starting on the right, the intercept has a very easy interpretation. It's the value of Y where the plane of the response crosses 0 for both X1 and X2. That is, when there is 0 of study hours and 0 of previous knowledge. Easy.  (Important for later: we aren't even thinking about the interaction term here because in this kind of model, when X1=0, and X2=0, we know that the interaction adds nothing because that b3 coefficient is being multiplied by zeros)

 

For the centered model on the left, the model intercept of 50 is well above the value when there is 0 of both Xs. But why the bump of roughly 20 exam points?

 

A score of 50 is where we have roughly 40 of Previous Knowledge and 0 Study Hours; or, where we have 0 Previous Knowledge and 4 Study Hours. Here I've toggled on the value grids so you can see them line up with the blue dots I put before:

julian_2-1750158949377.png

 

So, what gives?! We know these are not the means of Previous Knowledge and Study Hours, so it's not as simple as holding one variable constant and the other at their mean. One thing might pop out to you here: these points are a symmetric distance up the plane of response from the "true" (X1=0, and X2=0) intercept. And the only term in our model that exerts symmetric influence (in a scaled sense) on Y across the factors of X1 and X2 is b3, the interaction term.

 

What we're not accounting for yet is setting the *interaction* term, B3, to 0. And that zero happens at a different place in a model like this than where X1 and X2 are 0 (because of that centering); it happens at the means of X1 and X2, so we're talking about *average* interaction. The intercept of 50 here reflects a kind of adjusted baseline: it's what we would get at (X1 = 0 or X2 = 0) if there were no interaction effect in the population. Conceptually, an estimate the intercept adjusted for the presence of the interaction.

 

To me, this term resists a conceptual interpretation quite a bit more than any typical intercept but here's how I would frame it in this case: With the negative coefficient for the interaction term, we know that these factors are interacting antagonistically (more of one decreases the strength of the relationship between the response Y, and the other factor). That is, the more people know ahead of time, the less they get value from studying on average. Or, the more people study, the less on average they get value from how much they knew. The intercept in this model is trying to tell us what exam scores would be like *if that were not the case.* If that interaction weren't the state of the world we measured, then people who studied 0 hours would have had more value from their previous knowledge, and so they would do better on the exam, a bump up from an intercept of 30 to 50. And if that interaction weren't the state of the world we measured, then people who had 0 previous knowledge would have had more value from their studying, hence that same bump up of the intercept from 30 to 50. Like an ANCOVA, this is a statistical "as if" thought experiment.

 

I hope this helps!

 

Jules

 

Recommended Articles