Choose Language Hide Translation Bar

Easy DOE: Easy Enough for a 7-Year-old? (2023-EU-PO-1231)

JMP 17 introduces the Easy DOE platform, providing both flexible and guided modes to users, aiding their design choices. In addition, Easy DOE allows for the DOE workflow from design through data collection and modeling. This presentation offers a preview of the new Easy DOE platform, including insights from a 7-year-old using the new platform on a DOE problem of her choosing.

 

 

Hello .  I'm   Ryan Lekivetz ,  Manager  of  the  DOE  and  Reliability  team  at  JMP .

And  I'm  all  Rory Lekivetz.

We're  here  today  to  talk  to  you  about   Easy DOE .  The  question  is  it  easy  enough  for  a  seven- year- old? N ow  that you're eight  years  older  you're a lot  wiser  to  answer  that  question.

For  those  of  you  who  don't  know  about   Easy DOE, so  it's  a  new  platform  and  JMP  17 .  Now ,  the  idea  with  Easy DOE  is  it's  going  to  be  a  new  file  type  that  encompasses  the  design  through  the  analysis  of  a  designed  experiment .   No  more  do  you  need  to  worry  about  splitting  up ,  going  from  the  DOE  platform  to  a  data  table  and  then  running  the  analysis  separately .

Now ,  the  idea  with  Easy DOE  is  that  we're  trying  to  aid  novice  users  through  that  entire  workflow .   There's  going  to  be  a  guided  mode  where  we've  tried  to  add  hints  and  useful  defaults  to  guide  those  users  while  at  the  same  time  having  a  flexible  mode  for  those  who  are  more  comfortable  with  Easy DOE .

Now  before  we  started  doing  this  idea  with  Easy DOE  and  running  our  experiment,  I  did  talk  to  Rory  about  the  daily  workflow .  I f  you  open  up  the  DOE  documentation ,  we  outline  this  idea  of  a  Easy DOE  workflow  which  goes  through  the  described  phase ,  which  is  where  we  identify  the  goal  and  the  responses  and  the  different  factors,  specify  where  we're  looking  at  our  model We  create  the  design ,  collect  the  data ,  fit  a  model  to  that  data ,  and  then  use  that  model  to  predict .

Right  now ,  if  you  think  about  the  way  traditionally  we've  done  this  in  JMP,  at  that  design  phase  is  where  we  create  the  data  table .   Using  that  data  table  the  experimental  go  and  collect  the  data  and  then  perform  the  remaining  steps ending it.  N ow  what  you'll  see  in  Easy DOE ,  there's  the  tabbed  interface  where  each  tab  represents  one  of  these  steps in  the DOE  workflow .

Now  what  was  the  experiment  that  we  did ?

Paper  airplanes .

Rory  had  found  a  website  that  talked  about  different  ways  to  create  paper  airplanes .  You  want  to  tell  them  what  was  the  response ?  What  were  you  trying  to  measure ?

We  were  trying  to  measure  the  distance  which  was  inches .

What  factors  did  you  end  up  deciding  that  we  could  change ?

For  factors  we  decided  on  war  plane  type,  paper  type,   flying force  and  paperclip .

Yeah .  Now  you  to  tell  them  about  some  of  these  different  tabs .  Okay ,  so  let's  start .  What  was  the  define  tab ?

The  define  tab  was  where  you  got  to  choose  your  factors  and  your  responses .

That's  right .   I  should  mention  here  as  well  that  when  we  were  using  Easy DOE ,  I  left  Lory  in  control  of  the  entire  platform .   She  launched  it .  She  was  the  one  entering  everything  and  clicking  between  tabs  and  all  of  that .  I  think   after  the  define  tab ,  we  moved  to  the  next.  What  was  that  next  tab?

Model. F or  the  model  tab ,  you  had  to  choose w hich  one  of  these  four   was  the  best  for  your  experiment.

Now  I'll  say  too,  on  this  one  this  is  where  we  had  to  talk  a  little  bit  more  about  what  these  different  model  types  mean .   Of  course ,  for  a  seven- year- old  and  even  an  eight- year- old ,  now  that  idea  of  understanding  interactions  can  be  a  difficult  thing .

Now ,  the  main  effect  versus  the  interaction One  of  the  nice  things  was  the  website  that  we  had  found  about  creating  paper  airplanes .  It  talked  about  how  some  of  the  different  types  of  paper  airplanes  do  better  when  you  throw  it  hard  versus  light .

It  already  had  discussed  that  idea  of  interactions,  so  that's  why  ultimately,  I  helped  her  decide  on  picking  that  two- factor  interaction  model  with  the  main  effects .

Once  we  had  that  model,  then  what  happened?

Then  was  the  design The  design  shows  you  what  you're  going  to  be  making .   Since  we  were  doing  paper  airplanes  and  we  entered  the  factors  for  tight  paper  throwing  for  some  paper  clip ,  then  it  sounds  like  different  types ,  different  papers,   different  throwing  forces  like  route  and  paper  clip  or   no paper clip.

Yes ,  I  think  we  made  the  16  different  paper  airplanes  and  so  each  one  was  a  different  one .  I  think  we  put  a  number  on  it .  Is  that  right ?   We  label  it  with  a  number  one .  Yeah .   Then  what  happens  after  we  have  that  design,  what  do  we  do  with  that ?

Then  we  do  good  data  entry .   With  data  entry  is  where  you  enter  in  how  many  inches you want.

Yeah .   I  think  we  went  outside and  we  took  those  paper  airplanes  and  we  flew  them  anyway  and  then  just  measured  that .  Yeah ,  that's  right .  W hat  happened   after we had  that  data  entry ?

Then  we  go  to  be  analyzed .   Analyze  is  where  you  figure  out  which  ones  were  the best.

Yeah ,  which  ones  really  were  impacting  that  distance  flown .  Now ,  I  should  mention  here ,  so  this  is  a  novel  thing in Easy DOE .  The  confidence  intervals  for  each  of  our  different  effects  are  clickable .

All  right,  I  had  actually  thought  that  this  was  going  to  be  a  really  difficult  time  to  talk  about  the  analyzed .  But  as  soon  as  we  got  there,  so  it  starts  with  all  of  the  terms  in  the  model  and  very  quickly  figured  out  that  you  could  click  on  them She   looked  at  the  ones  that  were  close  to  zero  and  just  removed  them .

On  the  top  was  actually  her  model .   She  actually  picked  a  much  simpler  model  than  even  what  the  best  model .  You'll  notice  there  is  a  best  model  one .  But  one  could  argue  that  I  actually  might  even  prefer  her  model  to  the  one  that  was  picked  by  the  best  model .

But  again ,  still  a  very  nice  way  to   play  around  with  your  model  and  see  what  happens  if  term  enter o r  are  removed  just  by  clicking  on  those  confidence  intervals .  T hen  after  we  moved  to  the  analysis ,  what  was  that  tab they had?

The  predict  tab  was  where  you  could  see   which  types  or  which t hings   were the  best .   The  best  look  like  it  would  probably  be  a  dirt  metal  construction  and  differently  for  us  since  it  was  like,  the   hard in blue light   was  like…

Did  it  matter or  not  really?

Not  really .   It  would  be  like  you  could do hard or light  in  your  paper .

I  should  mention  here,  so  it  was  interesting  to  see  she  hadn't  really  seen  the  prediction  profiler  so  much  before .  I  mean ,  wasn't  familiar  with  it .  S he  did  have  to  be  told  to  click  in  there  to  see  what  happens .  But  even  for  a  seven- year- old ,  it's  interesting  to  see  once  they  have  that  sense  that  they  can  click  within  that  prediction  profiler ,  she  was  really  able  to  get  the  hang  of  it .

J ust  some  final  thoughts  from  Easy DOE I  asked  Rory  a  few  questions  ahead  of  time .   What  would  you  like  to  tell  people  about  Easy  DOE ?

It  was  really  fun .

Yeah .   If  you  were  to  do  this  experiment  again ,  would  you  change  or  what  would  you  change ?

The  factors ,   maybe  different  days  for  the   weather .

You think like  it  might  be  windy  on  some  days  and  not  on  others .  F or  my  own  perspective ,  you  know ,  so  she  was  actually  able  to  complete  this  with  minimal  help  from  me .  I  mean ,  she  was  in  control  the  entire  time of the  Easy DOE  platform .   A  lot  of  these  different  choices  she  was  making  on  her  own Even  when  it  came  to  the  factors  that  she  picked .

As  well   she  actually  did  help  us  find  some  usability  issues .   There  were  pieces  like  in  the  design  tab  that  I  think  we  improve  throughout  because  of  users  trying  this  out  not  just  for  her ,  but  as  well  as  other  users  that  we  had  in  the DOE  program The  model  she  definitely  needed  help  with ,  but  the  analysis  was  easier  than  expected .

Just  some  references ,  acknowledgments .   Really ,  I  just  want  to  thank  all  the  members  of  JMP  that  helped  in  the  development  of Easy DOE .   There's  a  huge  list  that  you'll  actually  see We  have  a  Discovery  America  presentation  there  as  well ,  where  we  talk  about  this  in  a  little  bit  more  detail Again ,  all  the  feedback  from  external  and  internal  users  that  have  seen  this  before  the  release  of  17  and  since  it's  been  released .

Thank  you  for  your  time  and  joining  us  today .   We  hope  you'll  join  us  during  Discovery  where  we  can  discuss  this  poster .  Not  sure  yet  if  you'll  be  able  to  join  us ,  but  I  definitely  will  be  and  hopefully  you as  well .  Thank  you .

Thank  you .

Presenter