Choose Language Hide Translation Bar

A Family of Orthogonal Main Effects Screening Designs for Mixed Level Factors (2023-EU-30MP-1272)

Bradley Jones, JMP Distinguished Research Fellow, JMP

 

There is scant literature on screening when some factors are at three levels and others are at two levels. Two well-known and well-worn examples are Taguchi's L18 and L36 designs. However, these designs are limited in two ways. First, they only allow for either 18 or 36 runs, which is restrictive. Second, they provide no protection against bias of the main effects due to active two-factor interactions (2FIs). In this talk, I will introduce a family of orthogonal, mixed-level screening designs in multiples of eight runs. The 16-run design can accommodate up to four continuous three-level factors and up to eight two-level factors. The two-level factors can be either continuous or categorical. All of the designs supply substantial bias protection of the estimates of the main effects due to active 2FIs. I will show a direct construction of these designs (no optimization algorithm necessary!) using the JSL commands Hadamard product and direct product.

 

 

Hello.  My  name  is  Bradley  Jones.  I  lead  the  team  of   DoE and  reliability  in  JMP,  and  I  want  to  talk  to  you  today  about  a  family  of  orthogonal  main  effects  screening  designs  for  mixed  level  factors.  This  is  a  subject  which  I'm  really  excited  about.  We've  just  submitted  a  revision  to  the  paper  for  this  and  I'm  hoping  that  it  will  get  accepted  so  we  can  include  it  along  with  definitive  screening  designs  in  the   DoE platforms   in JMP. L et's  get  started.

My  collaborators  for  this  work  are  Chris  Nachtsheim,  who's  a  Professor  at  the  University  of  Minnesota  Carlson  School  of  Business,  and  Ryan  Lekivetz,  who's  a  member  of  my   DoE team  at  JMP.

Here's  my  agenda.  I'm  going  to  start  with  a  little  bit  of  history  and  some  technical  preliminaries.  Then  I'm  going  to  describe  three  different  constructions  for  these  orthogonal  mixed  level  screening  designs. T here  are  three  different  ways  that  we  can  make  them.

I'll  show  you  the  JMP  scripting  language  for  creating  these  design  sets.  That  will  only  be  necessary  until  we  can  get  them  built  into  JMP  itself.  Then  I'll  spend  a  little  bit  of  time  looking  at  the  design  properties  for  designs  constructed  under  these  three  methods.  I'll  discuss  data  analysis  for  these  designs  and  show  an  example  in  JMP,  and  then  I'll  make  a  summary  and  some  recommendations  at  the  end.   Let's  start  with  some  history  and  motivation.

The  first  screening  designs  were  fractional  factorial  designs  like  apartment  designs,  or  non  regular  fractional  factorial  designs  or  regular  fractional  factorial  designs.  For  these  designs,  every  factor  was  at  two  levels  only.  En gineers  that  I  have  talked  to  have  felt  uncomfortable  about  these  designs  because  they  felt  that  the  world  tends  to  be  nonlinear  and  two  levels  just  isn't  sufficient  to  capture  nonlinearity  in  the  effect  of  a  factor  in  a  response.

Then  in  2011,  definitive  screening  designs  arrived  and  here  all  the  factors  were  assumed  to  be  continuous  and  each  factor  was  at  three  levels,  which  allows  you  to  fit  curves  to  the  relationship  between  factors  and  responses.  A t  the  bottom  there  is  the  citation  for or  the  reference  for  the  paper  that  first  introduced  these  designs  in  2011.

Now,  there  are  some  pros  for  our  initial  implementation  of  DSDs  and  also  some  cons.  Let's  go  through  the  pros  first.  The  pros  are  that  at  least  in  our  original  implementation,  six  factor,  eight  factor  and   10 factor  definitive  screen  designs  had  orthogonal  main  effects,  but  we  were  unable  to  get  orthogonal  main  effects  for  more  factors.   It  turns  out  that  a  year  later,  somebody  published  a  nice  way  of  getting  orthogonal  designs  for  definitive  screening  experiments  for  every  even  number  of  factors  for  which  conference  matrices  were  available.   That  was  a  big  advance.

Another  good  thing  about  DSDs  is  that  the  main  effects are  orthogonal  two- factor  interactions  so  that  the  estimate  of  a  main  effect  will  never  be  biased  by  any  active  two- factor  interaction.

The  really  exciting  aspect  about  DSDs  is  that  all  the  quadratic  effects  were  estimable,  which  is  never  possible  with  screening  designs.  Even  with  centerpoints,  you  can  detect  that  there  is  a  non linear  effect,  you  just  don't  know  where  it's  coming  from.

Then  finally,  in  DSDs,  if  there  are  six  factors  or  more,  and  only  three  of  the  factors  turn  out  to  be  important,  then  at  the  same  time  you  do  screening,  you  can  also  do  response  surface  optimization.   You  could  maybe  get,  if  you're  lucky,  a  screening  design  and  a  response  surface  design t o  optimize  a  process  in  one  shot.  You  have  to  be  lucky,  of  course,  you  have  to  have  three  or  fewer  active  effects  or  factors.

The  cons  of  the  initial  implementation  of  definitive  screening  designs  is  that  first,  they  couldn't  accommodate  categorical  factors.  Secondly,  they  couldn't  accommodate  any  blocking.   Thirdly,  some  researchers  have  pointed  out  that  for  detecting  small  quadratic  effects,  that  is,  quadratic  effects  where  the  size  of  the  effect  is  about  the  same  order  as  the  error  standard  deviation,  there  is  low  power  for  these  estimates,  detecting  them  successfully.  Of  course,  if  the  quadratic  effect  is  big,  then  of  course  you  can  detect  it,  especially  if  it's  three  times  as  big  as  the  error standard  deviation.

Now,  after  the  original  publication  of  DSDs,  we  were  well  aware  that  it  was  a  problem  that  we  couldn't  accommodate  two  level  categorical  factors.  So  we  wrote  a  new  paper  in   Journal  of  Quality  Technology  in  2013  that  showed  how  to  incorporate  2- level  categorical  factors.

Then  in  2016,  we  wrote  another  paper  in  technometrics  that  showed  how  to  block  definitive  screen  designs  using  orthogonal  blocks,  blocks  that  are  orthogonal  to  the  factors.  W e  were  trying  step- by- step  to  address  the  cons  that  were  associated  with  original  implementation  of  this  methodology.  Another  thing  that  we  noticed  was  that  people  were  having  a  little  bit  of  trouble  knowing  how  to  analyze  definitive  screening  designs.   We  invented  an  analysis  technique  that  was  based  on  our  understanding  of  the  structure  of  a  DSD.   It  took  particular  advantage  of  the  special  structure  of  a  DSD  to  make  the  analysis  sensitive  to  that  structure.  Rather  than  trying  to  use  some  generic  model  selection  tool  like  stepwise  or  lasso  or  one  of  those.

This  made  it  possible  for  a  non-expert  in  model  selection  to  use  this  out  of  the  box  automated  technique  for  analyzing  a  definitive  screening  design.   That  was  in  2017,  but  there's  still  problems.

First,  we  did  write  that  paper  that  added  categorical  factors  to  a  DSD,  but  if  you  had  more  than  three,  the  quality  of  the  design  went  down,  and  that  was  undesirable.  In  fact,  if  you  had  too  many  categorical  factors,  things  didn't  look  good  at  all.   That  was  an  issue.  A gain,  quadratic  effects  have  been  pointed  out  to  have  low  power  if  they're  small.   The  purpose  of  this  talk  is  to  introduce  a  new  family  of  designs  that  addresses  these  issues. H ere  we  go.

First,  I  have  to  do  some  technical  preliminaries  to  explain  what  we  need  to  have  the  ability  to  do  in  order  to  build  these  designs.   I'm  going  to  start  out  by  talking  about  conference  matrices.  The  conference  matrix  is  the  tool  that  the  second  paper  that  discussed  DSDs  in  2012  and  introduced  all  the  orthogonal  DSDs  for  twelve  factors,  14  factors,  16  factors,  and  so  on.  They  use  conference  matrices  to  make  that  happen.

I  need  to  show  you  what  a  conference  matrix  is.  You  can  see  here,  conference  matrix,  that  is   four  factors  with  four  runs,  and  there  are  zeros  on  the  diagonal  elements  and  ones  and  minus  ones  off  the  diagonal.  T he  cool  thing  about  a  conference  matrix  is  that  if  you  multiply  the  transpose  of  conference  matrix  with  the  conference  matrix,  you  get  an  identity  matrix  times  the  one  minus  the  number  of  rows  in  the  design.  I t's  an  orthogonal  design.

Now,  conference  matrices  exist  when  the  number  of  rows  and  columns  is  equal.  They're  square  matrices  and  they  only  exist  when  the  number  of  rows  and  columns  is  an  even  number.  There's  a  conference  matrix  for  every  even  number  of  rows  and  columns  from  two  rows  or  and  two  columns  to  30  rows  and  30  columns,  except  for  the  case  where  the  number  of  rows  and  columns  is  22.   It's  actually  been  proven  that  the  case  where  there  are  2 2 rows and colum ns,  the  conference  matrix  has  been  proven  not  to  exist.  So  there's  no  way  to  construct  one,  sadly,  although  I  can't  prove  that  result  myself.

Okay,  the  next  thing  I  need  to  talk  about  is  something  called  a   Kronecker product,  which  uses  that  circular  symbol  with  an  X  in  the  middle  of  it,  so  that  when  you  see  that  in  an  equation,  it  means  you  want  to  make  a  Kronecker  product.   The   Kronecker product  is  also  called  a  direct  product,  and  in  fact,  JMP  scripting  languages,  language   JSL makes   Kronecker products  of  matrices  using  the  direct  product  command,  not  the  Kronecker  product  command.

The   Kronecker product  of  a  vector  one  stacked  on  top  of  negative  one  with  a  conference  matrix  stacks  C  on  top  of  negative  C  as  below.   What  the  Kronecker  product  does  is  for  every  element  in  the  first  matrix,  it  substitutes  that  element  times  the  second  matrix.  So  one  times  the  conference  matrix  is  just  the  conference  matrix,  and  negative  one  times  the  conference  matrix  is  negative  of  the  conference  matrix.

Basically,  a   Kronecker  product  of  one  minus  one  with  a  conference  matrix  just  stacks  the  conference  matrix  on  top  of  itself.  So  here's  a  case  where  I  did  just  that.  You  have  a  four  by  four  conference  matrix  on  top  of  its  fold ,  which  is  also  four  by  four,  and  if  you  were  to  add  a  row  zero,  you'd  have  a  four  factor  definitive  screening  design.

Conference  matrices  are  useful,   Kronecker products  are  also  very  useful  for  constructing  designs,  as  it  turns  out.  I  have  a  few  more  preliminaries  to  go  over.  Let  me  talk  a  little  bit  about   Hadamard matrices.   Hadamard matrices  are  also  square  matrices,  but  they're  constructed  of  ones  and  minus  ones.   We  have   Hadamard matrices  built  into  JMP  for  every  multiple  of  four  runs  or  four  rows  and  four  columns  up  to  668  rows  and  668  columns.  So  every  multiple  of  four,  we  can  support  a  Hadamard  matrix.

That  well  known.   Hadamard designs  are  the   Plackett–Burman  designs  and  the  two  level  fractional  factorial  designs.  These  are  both   Hadamard matrices.   Hadamard was  a  French  mathematician  who  lived  in  the  late  19th  century,  and  he  invented  this  idea.  I f  I had my matrix as  m  rows,  it's  transposed  times  itself.  Is  m  times  the  identity  matrix.

T hat  means  the   Hadamard  matrix  is  orthogonal,  number  one,  and  number  two,  it  has  the  greatest  possible  information  about  the  rows  and  the  columns  in  the  matrix  that's  possible,  given  that  you're  using  numbers  between  negative  one  and  one.   They're  very  valuable  tools  for  constructing  designs.

Now  we  have  everything  that  we  need  to  show  how  to  construct  these  new  designs.  We  call  them  orthogonal  mix  level  designs  or  OMLs.   They're  mixed  level  because  half  of  the  columns  or  half  of  the  factors  are  three  levels.  Therefore,  the  three  level  continuous  factors  and  half  of  the  columns  or  factors  are  two  levels,  and  they're  for  categorical  factors  or  for  continuous  factors  for  which  we're  not  worried  about  nonlinear  effects.

Here's  the  first  method  for  constructing  one  of  our  OMLs.   If  C  sub  K  is  a  k  by  k  conference  matrix  and  H  sub   2k  is  a  2k  Hadamard  matrix,  so  H  sub   2K  is  a   Hadamard matrix  which  has  twice  as  many  rows  and  columns  as  the  conference  matrix  has.

Then  if  we  stack  a  conference  matrix  on  top  of  its  foldover  and  then  replicate  that,  we  get  this  matrix  DD,  which  is  just  C  negative  C,  C  negative  C,  all  stacked  on  top  of  each  other.   DD  is  two  DSDs  stacked  above  each  other,  minus  the  two  center  runs  that  DSDs  normally  have.

Now,  HH  is  because   DD ends  up  having  4k  runs  because  there  are  four  conference  matrices  with  K  rows  and  columns  stacked  on  top  of  each  other.  So  there  are  4k  rows  in  this  design  and  K  columns.  HH  is  just   Hatamard  matrix  stacked  on  top  of  its  fold over  design.

Since  H  has  two  k  rows  and  columns  already,  stacking  it  on  top  of  itself  makes  it  have  4k  rows  just  like  the  DD  matrix  has.   It  turns  out  that  you  can  just  concatenate  these  two  matrices  horizontally  to  make  an  orthogonal  multilevel  design.  The  DD  part  of  it  all  has  three  levels  per  factor.  And  the  HH  part  of  it  has  two  levels  per  factor.  And  you  can  see  that  there  are  k,  three  level  factors  and  two  k  two  level  factors.  Therefore, a  4k  row  design  you  can  have  as  many  as   3k  columns.

For  example,  if  your  design  K  was  six,  you'd  have  24  rows  and  18  columns.  Six  of  the  factors  would  be  three  levels  and  twelve  of  them  would  be  two  levels.   Now  you  have  way  more  two- level  factors  and  you  haven't  lost  any  of  the  features  of  the  definitive  screening  design.  The  main  effects  of  this  design  are  orthogonal  to  each  other.

Here's  an  example  where  I  constructed  an  OML  from  a  6 by 6  conference  matrix  and  a  12 by 12  Hadamard  matrix.   You  can  see  there  are  24  rows  in  this  matrix  and  18  columns.  The  first  six  of  them  are  the  six,  three- level  columns,  and  the  next  twelve  are  the  twelve  two- level  columns.

Now,  of  course,  you  don't  need  to  use  every  column  of  this  design.  You  could  still  use  this  design  even  if  you  had  say,  four  or  five  three  level  factors  and  seven  two  level  factors.  You  just  remove  five  of  the  two  level  factors  and  a  couple  of  the  three  level  factors,  and  it's  sort  of  arbitrary  which  ones  you  might  remove.

Here's  the  second  construction  approach  here.  C  sub  K  is  a  K  by  K  conference  matrix,  and  H  sub  K  is  a  K  by  K  Hadamard  matrix.   Now  we're  going  to  create  DD  the  same  way  we  did  before.  DD  is  just  a  definitive  screening  design  stacked  on  top  of  itself,  minus  the  two  synergies.   HH  is  a  replicated  Hadamard  matrix  on  top  of  the  same  Hadamard  matrix  folded  over  twice.

Now  if  you  look  at  the  two  columns  of  ones  and  minus  ones,  you  might  notice  that  those  two  vectors  are  orthogonal  to  each  other.   That's  what  makes  this  particular  construction  really,  really  powerful.  In  this  case,  the  design  has  4K  rows  and  only  two  K  columns.  K  of  the  factors  are  at  three  levels  and  K  factors  are  at  two  levels.

The  number  of  runs  in  this  design  is  twice  the  number  of  columns.  But  that's  still  a  very  efficient  number  of  runs  given  the  number  of  factors.  It's  the  same  effect  of  definitive  screening  designs  in  fact.  Definitive  screening  designs  have  twice  as  many,  twice  as  many  plus  one  runs  than  factors.

Here's  an  example  created  using  a  4 by 4  conference  matrix  and  a  4 by 4 H adamard  matrix.  When  you  stack  them  on  top  of  each  other  four  times,  you  get  eight  columns  and  16  rows.  Columns  A  through  D,  you  can  see  are  three  levels  because  you  can  see  those  zeros  and  there  are  four  zeros  in  every  column.

I  should  point  out  that  if  you  had  a  definitive  screening  design,  there  are  only  three  zeros  in  each  column.   Having  an  extra  zero  makes  the  power  for  detecting  a  quadratic  effect  a  little  higher  than  for  the  definitive  screened  design.  That's  the  second  construction  method.

The  third  construction  method  is  very  similar  to  the  second,  except  that  you  have  two  different  ways  of  adding  Hadamard  matrices  to  the  example.  Here  we  have  the  DD  part  is  the  same  as  the  first  two  construction  methods.  The  HH  part,  there  are  two  HH  things.  One  with  the  vector  1, 1  -1 , -1 ,  and  the  other  one  with  the  vector  1,  -1 ,  -1, 1 .   The  three  vectors  that  are  ones  and  negative  ones  are  all  orthogonal  to  each  other.  That  yields  an  orthogonal  main  effects  design.  In  this  case,  the  third  construction  again  has  4K  rows  and   3K  columns,  that  is  K  factors  at  three  levels  and  two  K  factors  at  two  levels.

Those  are  the  three  methods.  Here's  an  example  of  that  construction  with  using  a  4 by 4  conference  matrix  and  a  4 by 4  Hadamard  matrix.   The  result  is  a  twelve- column  design  with  16  rows.  Twelve  factors  in  16  rows.  Very  efficient  design  for  looking  at  twelve  factors.  It's  also  orthogonal  for  the  main  effects.   Main  effects  are  orthogonal  to  two- factor  interactions.

Now  I  want  to  show  you  three  scripts  for  creating  these  designs  using  JSL.  In  the  meantime,  before  we  drop  this  methodology  into  JMP,  you  can  create  these  designs  with  a  very  simple  JSL  script.   The  first  command  is  creating  a  conference  matrix,  in  this  case  conference  matrix  with  six  rows  and  six  columns.

Then  D  is  the  direct  product  of  the  vector 1, -1   ,  1,  -1  and  C.   That  gives  you  the  matrix  DD  that  we  saw  in  our  constructions.   Then  eight  is  a  Hadamard  matrix  with  twelve  rows  and  twelve  columns.  Notice  that  twelve  is  two  times  six.   We  were  requiring  that  for  the  first  construction,  the  Hadamard  matrix  has  to  have  twice  as  many  rows  and  columns  as  the  conference  matrix.

We  make  HH  by  multiplying  1, -1  by  using  the  direct  product,  the  Carnegie  Product  Construction.  That  gives  you  a  24- run  HH  design.   The  H  thing  has  24  runs  and  twelve  columns.   Then  the  last  step  is  to  horizontally  concatenate  D  and  HH  to  produce  ML  which  I  just  shortened,  shortened  OML  to  ML.   Then  the  as  table  command  makes  a  table  out  of  that  matrix.

The  OML  that  we  just  created  has  24  rows  and  18  columns.  Six  of  the  columns  are  factors  at  three  levels,  and  twelve  of  the  factors  are  at  two  levels.  Now,  the  six  in  the  first  line  can  be  replaced  by  eight, 10,  12, 14  up  to  30,  except  for  22.   The  twelve  in  the  third  line  must  be  twice  whatever  number  you  put  in  the  first  line.   You  can  use  this  construction  to  create  all  kinds  of  OML  designs  just  by  changing  the  numbers  in  the  first  and  third  columns.

Here's  the  second  construction  method  script.   I  start  again  with  the  conference  matrix.  This  time  I'm  doing  a  conference  matrix  of  four  rows  and  four  columns.  D  is  a  direct  product  of  1, -1 , 1, -1  and  C.  That's  the  same  as  before.

This  time  I  make  H  be  a Hadamard  of  four  instead  of  twice  the  number  in  the  first  line.   I  have  to  have  a  vector  with  four  elements  to  direct  product  with  H.   I use  1, 1, -1, -1,  use  the  chronicle  product  of  that  or  the  direct  product  in JMP and  JSL  speak.   I  get  a  design  that  has  16  rows  and  eight  columns  by  horizontally  concatenating  that  double  vertical  line  thing  horizontally  concatenates  two  matrices  and  then  the  S  table  makes  the  table  out  of  it.   This  second  construction  has  16  rows  and  eight  columns.  There  are  four  factors  at  three  levels  and  four  factors  at  two  levels.   The  four  in  the  first  and  third  lines  can  be  replaced  with  any  even  number  for  which  a  conference  matrix  exists.

I  need  to  correct  myself.  The  conference  matrix  has  to  be  a  multiple  of  four  in  order  for  this  to  work,  because  the  Hadamard  matrix  is  a  multiple  of  four.

Here's  the  last  construction  method.  Again,  we  have  a  conference  matrix  of  four,  but  it  could  be   four,  it  could  be  eight,  or  twelve  or  16.  We  make  a  direct  product  of  this  vector  of  ones  and  negative  ones  and  C  to  get  the  replicated  definitive  screening  design.  Here  we  create  a  Hadamard  matrix  of  four,  but  we  have  two  different  direct  products.  The  first  one  where  we're  making  a  chronicle  product  of  1,  1,  -1, -1  with  H,  and  the  second  one  we're  making  a  chronicle  product  or  direct  product  of  1, -1 ,  -1 ,  1  and  H.

Those  are  two  different  matrices  and  they  happen  to  be  orthogonal  to  each  other.   Then  we  horizontally  concatenate  all  three  of  these  matrices  and  make  a  table  from  that.   This  design  now  has  16  rows  because  it's  four  runs  in  the  conference  matrix  times  four.   You  have  16  rows  and  twelve  columns.  There  are  four  factors  at  three  levels  and  eight  factors  at  two  levels.  Here  are  three  very  easy  JSL  scripts.  To  make  these  designs,  I'll  put  JSL  into  the...  When  it  goes  into  the  JMP  community,  I'll  add  the  JSL.   I'll  also  add  several  examples  of  these  OML  designs  that  you  can  use.

Now  I  want  to  talk  about  a  little  bit  about  the  properties  of  these  designs.  Here  we  see  the  design  properties  for  method  one   and  the  colour  map  and  the  correlations  shows  that  there  are  no  correlations  between  any  of  the  12  factors  in  this  or  actually  18  factors  in  this  design.  The  three- level  factors  are  about  10%  less  efficiently  estimating  than  the  main  effects  than  the  two- level  factors.  That's  because  of  the  zeros  in  each  of  those  columns.  That  doesn't  help  you,  the  zeros  don't  help  you  estimate  main  effects.

Now   I  want  to  show  you  the  alias  matrices  for  this  design  construction  method.  You  can  see  that  there  are  a  lot  of  main  effects  that  are  uncorrelated  with  two- factor  interactions,  but  there  are  also  a  lot  of  main  effects  that  are  correlated  with  two- factor  interactions.

The  three- level  factors  main  effects  are  not  alias  with  any  of  their  two  factor  interaction.  The  same  is  also  true  of  the  two- level  factors.  Their  main  effects  are  not  alias  with  their  two- factor  interactions  because  both  sides  of  this  design  are  constructed  from  fold- over  designs.  W e  see  that  there's  quite  a  bit  of  potential  aliasing  of  main  effects  from  active  two-factor  interactions.   In  some  sense,  method  one  is  a  little  riskier  to  use  than  the  other  methods.

Here  are  the  design  properties  for  method  two.  You  can  see  that  here  I'm  making  a  design  that  has  16  factors  and  eight  columns, I mean  16  rows f or  eight  factors.  The  three- level  factors  have  15%  longer  confidence  intervals  than  the  two- level  factors.  Again,  that  is  because  those  four  factors  all  have  four  zeros.  Four  of  the  16  runs  are  zero  instead  of  1  or  -1.

The  cool  thing  about  the  second  design  construction  is  that  none  of  the  main  effects  is  correlated  with  any  two- factor  interactions.   That  has  many  of  the  desirable  effect  or  characteristics  of  a  definitive  screening  design.  There's  a  lot  of  orthogonality  between  pairs  of  two- factor  interactions,  but  there  are  also  some  correlations.  You  can  see  here  are  some  correlations,  here  are  some,  and  so  on.

Finally,  the  design  properties  for  method  three  show  that  three- level  factors  are  a  little  less  efficiently  estimated  than  two -level  factors  15%,  15.5%.  We  can  see  that  there's  some  aliasing  between  main  effects  and  two- factor  interactions,  but  not  as  much  as  for  the  design  construction  number  one.   In  terms  of  risk,  this  accommodates  more  factors  with  less  risk  than  the  first  construction  method.

I'd  like  now  to  compare  DSD  to  an  orthogonal  main  effect  or  mixed- level  design.   You  can  make  a  DSD  with  eight  factors,  eight,  three- level  factors,  and  that  would  have  17  runs.  I f  you  get  rid  of  the  centre  run,  you  would  have  a  run  that's  directly  comparable  with  a  multi- level  16- run  design  that  you've  seen  in  design  construction  too.

Now,  if  we  compare  the  efficiency  for  estimating  main  effects,  the  definitive  screening  design  is  only  91%  D  efficient  with  respect  to  the  mixed- level  design,  the  G  efficiency  is  92%,  the  A  efficiency  is  roughly  90%  and  the  I  efficiency  is  roughly  82%.  Y ou  can  see  that  the  fraction  of  the  design  space  plot  shows  that  the  curve  for  the  mixed- level  design  is  below  the  curve  for  the  definitive  screen  design  pretty  much  everywhere.   This  design  is  clearly  preferable  to  the  defendant  screen  design  for  estimating  main  effects  at  least.

Now  I  want  to  talk  about  data  analysis  and  use  an  example.   I've  created  a  design  using  the  second  construction  and  I  created  a  Y  vector  by  adding  random  normal  errors  to  a  specific  function  with  both  main  effects  and  two- factor  interactions  and  rounding  it  to  two  decimal  places.   The  true  equation,  the  true  function  is  this  one  here.  It  has  A, B, E  and  F  main  effects  are  all  active  and  the  AB, BE  and  EF  two- factor  interactions  are  all  active.

That's  a  function  without  error.  I  added  normal  random  errors  with  a  standard  deviation  of  one.   What  I  used  was  since  this  design  can  be  fit  using  the  Fit  Definitive  Screening  Design  platform  within  JMP,  that's  what  I  used.   Here  you  see  that  the  Fit  Definitive  Screening  Design  finds  all  seven  real  effects  and  doesn't  find  any  spurious  effects.   It  gets  the  exact  correct  set  of  effects.

The  deviation  between  the  true  parameter  values  and  the  estimated  parameter  values  are  pretty  small.  For  example,  the  true  parameter  value  for  factor  A  is  2.03  and  its  estimate  is  2.45  plus  or  -35.  That's  one  standard  deviation  so  it's  just  a  little  bit  more  than  one  standard  deviation  from  its  true  value.

Here  that  the  true  value  of  the  coefficient  of  B  is  3.88  and  I  get  3.94,  which  is  very  close  to  its  exact  correct  value.  You  can  see  for  yourself  the  estimated  value  of  the  root  mean  squared  error  is  1.2  and  the  true  amount  of  random  error  I  added  was  exactly  one.  You  can  see  again,  this  analysis  procedure  has  really  chosen  the  exact  correct  analysis.

Now  I  want  to  do  a  little  JMP  demo  that  shows  basically  the  actual  by  predictive  plot  that  you  see  there  below.  Then  this  plot  shows  that  the  residuals  don't  have  any  indication  of  any  problem  as  well.  I'm  going  to  leave  PowerPoint  for  a  second  and  just  go  to  JMP.  Here's  my  data,  here's  the  function  with  no  error.  I  can  show  you  that,  that's  just  this  formula  that  I  showed  you  in  the  slide.

Then  here's  the  data  where  I've  added  random  error  to  each  of  these  values  with  it.  Then  what  delta  is,  is  the  difference  between  the  prediction  formula  of  Y  and  the  Y  with  no  error.  These  values  are  how  far  we  missed  the  true  value  of  Y  for  every  point.

If  I  do  the  Fit  Definitive  Screening  Design  of  Y,  I  get  what  I  showed  you  before  and  I  get  the  correct  main  effects  and  also  the  correct  two  factor  interactions.  Then  when  I  combine  them,  I  get  the  correct  model  with  the  correct  art,  very  close  to  the  true  estimate  of  sigma.

If  I  run  this  model  using  Fit  model,  this  is  the  actual  by  predicted  plot  I  get.  This  is  the  residual  plot  I  get.  Here's  the  prediction  profiler  that  shows  the  predictive  value  of  Y.  You  can  see  that  if  you  look  at  the  slope  of  the  line  of  B  and  see  as  I  change  the  value  of  A,  the  slope  of  B  changes.  If  I  change  this  B,  the  slope  of  A  changes,  if  I  change  E,  the  slope  of  F  changes.

This  indicates  interactions  happening.  If  I  wanted  to  maximize  this  function,  I  would  choose  the  high  value  for  each  of  the  factors.  Then  one  of  the  things  I  did  was  I  created  a  profiler  that  where  I  look  at  this  is  the  true  function,  this  is  my  predictive  formula  and  this  is  the  difference  between  those  two  functions.

This  is  the  setting  that  leads  to  the  largest  difference  between  the  predictive  value  and  the  true  value  of  the  function.  That's  what  I  wanted  to  show  you in  JMP  and  I'll  move  back  to  my  slides  now.  Let  me  summarize,  we've  talked  about  definitive  screen  designs  with  their  pros  and  cons.

I  then  introduced  the  idea  of  a  Chronicler  product  and  showed  how  to  construct  these  orthogonal  multilevel  designs  in  three  different  ways.  I  showed  you  the  JSL  scripts,  I  shared  the  JSL  scripts  for  constructing  these  designs.

You  can  use  this  script  by  changing  the  numbers  in  the  first  and  third  lines  to  make  designs  that  with  increasingly  large  numbers  of  runs.  I  talked  about  the  statistical  properties  of  these  designs  and  particular  showed  that  their  orthogonality,  but  also  in  the  case  of  design  construction  two,  not  only  are  they  orthogonal  for  the  main  effects,  but  the  main  effects  are  orthogonal  to  the  two  factor  interactions.

Design  construction  two  only  exists  for  designs  that  have  a  multiple  of  16  rows  and  columns,  which  is  a  slight  disadvantage  compared,  there's  more  flexibility  with  the  other  approaches.  Then  finally  I  showed  how  to  analyze  these  designs.  Let  me  make  a  couple  of  recommendations.

Design  construction  method  two  is  the  safest  approach  because  of  all  of  the  orthogonality  involved  and  the  fact  that  the  two  factor  interactions  are  uncorrelated  with  main  effects.  I  pointed  out  already  that  you  don't  have  to  use  all  the  columns.

You  can  create  one  of  these  designed  and  then  throw  away  certain  columns  in  order  to  accommodate  the  true  number  of  factors  that  you  have.  The  advantage  of  doing  that  is  that  you  will  also  get  better  estimates  of  the  error  variance.

Then  it's  important  to  remember  that  the  three  level  factors  are  for  continuous  factors  only.  It  wouldn't  make  sense  to  have  three  level  categorical  factors  for  these  columns  because  there  are  far  fewer  zero  elements  than  ones  and  plus  ones.

A  couple  of  more  things.  Quadratic  effects  it  turns  out,  are  slightly  better  estimated  by  an  orthogonal  main  mixed  level  design  than  a  DSD.  But  if  you  wanted  to  improve  the  quadratic  effect  estimation,  you  could  add  two  rows  of  zeros  to  the  continuous  factors.  Those  would  be  like  center points.

Then  for  the  categorical  factor,  you  can  choose  any  vector  of  plus  ones  that  has  plus  ones  and  minus  ones  in  it.  Then  the  other,  the  second  row  would  have  just  the  fold  over  of  the  first  row  in  the  ones  and  minus  ones.  That  is  all  I  have  for  you  today.  Thank  you  very  much  for  your  attention.