cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

JMP Blog

A blog for anyone curious about data visualization, design of experiments, statistics, predictive modeling, and more
%3CLINGO-SUB%20id%3D%22lingo-sub-692896%22%20slang%3D%22zh-TW%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%3EPotenziamento%20della%20rete%20neurale%3A%20caso%20di%20studio%20dell'applicazione%20dell'apprendimento%20automatico%20nel%20processo%20di%20litografia%2Fincisione%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-692896%22%20slang%3D%22zh-TW%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%3E%3CP%3EIn%20un%E2%80%99era%20in%20cui%20l%E2%80%99intelligenza%20artificiale%20sta%20diventando%20sempre%20pi%C3%B9%20popolare%2C%20l%E2%80%99apprendimento%20automatico%20gioca%20un%20ruolo%20importante%3A%20la%20maggior%20parte%20delle%20persone%20vede%20prodotti%20o%20concetti%20completati%20e%20la%20chiave%20%C3%A8%20in%20realt%C3%A0%20il%20metodo%20che%20sta%20dietro%20ad%20essi.%20L'apprendimento%20automatico%20distingue%20anche%20due%20diverse%20categorie%20in%20termini%20di%20algoritmi%2C%20vale%20a%20dire%3CSTRONG%3E%20apprendimento%20supervisionato%3C%2FSTRONG%3E%20E%3CSTRONG%3E%20apprendimento%20non%20supervisionato%3C%2FSTRONG%3E%20.%20I%20metodi%20comuni%20di%20machine%20learning%20sono%20classificati%20come%20segue%3A%3C%2FP%3E%0A%3CTABLE%3E%0A%3CTBODY%3E%0A%3CTR%3E%0A%3CTD%20width%3D%22287%22%3E%3CP%3E%3CSTRONG%3Eapprendimento%20supervisionato%3C%2FSTRONG%3E%3C%2FP%3E%0A%3C%2FTD%3E%0A%3CTD%20width%3D%22287%22%3E%3CP%3E%3CSTRONG%3Eapprendimento%20non%20supervisionato%3C%2FSTRONG%3E%3C%2FP%3E%0A%3C%2FTD%3E%0A%3C%2FTR%3E%0A%3CTR%3E%0A%3CTD%20width%3D%22287%22%3E%3CP%3Ealbero%20decisionale%3C%2FP%3E%0A%3C%2FTD%3E%0A%3CTD%20width%3D%22287%22%3E%3CP%3Eraggruppamento%3C%2FP%3E%0A%3C%2FTD%3E%0A%3C%2FTR%3E%0A%3CTR%3E%0A%3CTD%20width%3D%22287%22%3E%3CP%3Erete%20neurale%3C%2FP%3E%0A%3C%2FTD%3E%0A%3CTD%20width%3D%22287%22%3E%3CP%3Emappa%20auto-organizzante%3C%2FP%3E%0A%3C%2FTD%3E%0A%3C%2FTR%3E%0A%3CTR%3E%0A%3CTD%20width%3D%22287%22%3E%3CP%3Eforesta%20casuale%3C%2FP%3E%0A%3C%2FTD%3E%0A%3CTD%20width%3D%22287%22%3E%3CP%3EAnalisi%20di%20correlazione%3C%2FP%3E%0A%3C%2FTD%3E%0A%3C%2FTR%3E%0A%3CTR%3E%0A%3CTD%20width%3D%22287%22%3E%3CP%3Eanalisi%20di%20regressione%3C%2FP%3E%0A%3C%2FTD%3E%0A%3CTD%20width%3D%22287%22%3E%3CP%3EScomposizione%20di%20un%20valore%20singolo%3C%2FP%3E%0A%3C%2FTD%3E%0A%3C%2FTR%3E%0A%3CTR%3E%0A%3CTD%20width%3D%22287%22%3E%3CP%3EK%20il%20vicino%20pi%C3%B9%20vicino%3C%2FP%3E%0A%3C%2FTD%3E%0A%3CTD%20width%3D%22287%22%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3C%2FTD%3E%0A%3C%2FTR%3E%0A%3CTR%3E%0A%3CTD%20width%3D%22287%22%3E%3CP%3EL'ingenuo%20Bayes%3C%2FP%3E%0A%3C%2FTD%3E%0A%3CTD%20width%3D%22287%22%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3C%2FTD%3E%0A%3C%2FTR%3E%0A%3C%2FTBODY%3E%0A%3C%2FTABLE%3E%0A%3CP%3E%3CBR%20%2F%3Eesistere%3CSTRONG%3E%20apprendimento%20supervisionato%3C%2FSTRONG%3E%20Uso%20medio%20e%20generale%3CSTRONG%3E%20Contrassegnato%3C%2FSTRONG%3E%20Set%20di%20dati%20per%20la%20formazione%2C%20viene%20utilizzato%20principalmente%20l'apprendimento%20supervisionato%3CSTRONG%3E%20Classificare%20e%20stabilire%20relazioni%20di%20regressione%3C%2FSTRONG%3E%20%3B%20piuttosto%20che%3CSTRONG%3E%20apprendimento%20supervisionato%3C%2FSTRONG%3E%20utilizzo%3CSTRONG%3E%20Dati%20senza%20etichetta%3C%2FSTRONG%3E%20Lo%20scopo%20dell'addestramento%20%C3%A8%20scoprire%20alcune%20strutture%20o%20modelli%20dai%20dati%2C%20la%20maggior%20parte%20dei%20quali%20vengono%20utilizzati%20in%3CSTRONG%3E%20raggruppamento%3C%2FSTRONG%3E%20E%3CSTRONG%3E%20Riduzione%20della%20dimensionalit%C3%A0%3C%2FSTRONG%3E%20superiore.%3C%2FP%3E%0A%3CH2%20id%3D%22toc-hId-1767476998%22%20id%3D%22toc-hId-1767567203%22%20id%3D%22toc-hId-1767567203%22%20id%3D%22toc-hId-1767567203%22%20id%3D%22toc-hId-1767567203%22%20id%3D%22toc-hId-1767567203%22%3E%3CSTRONG%3EComprendere%20l'apprendimento%20automatico%3A%20l'approccio%20delle%20reti%20neurali%3C%2FSTRONG%3E%3C%2FH2%3E%0A%3CP%3EOggi%20presenter%C3%B2%20la%20rete%20neurale%20che%20viene%20spesso%20utilizzata%20nell'apprendimento%20supervisionato%20e%20che%20ha%20una%20lunga%20storia%20di%20sviluppo.%20La%20rete%20neurale%20utilizzata%20in%20JMP%20%C3%A8%3CSTRONG%3E%20ANN%20(rete%20neurale%20artificiale)%3C%2FSTRONG%3E%3CSTRONG%3E%20metodo%20della%20rete%20neurale%20artificiale%3C%2FSTRONG%3E%20%2C%20rispetto%20al%20corpo%20umano%2C%20%C3%A8%20il%20concetto%20di%20neuroni.%20I%20neuroni%20includono%20corpi%20cellulari%2C%20dendriti%20e%20assoni.%20La%20funzione%20principale%20dei%20dendriti%20%C3%A8%20ricevere%20segnali%20da%20altri%20neuroni.%20Questi%20segnali%20verranno%20trasmessi%20ai%20dendriti%20attraverso%20le%20sinapsi%20e%20i%20dendriti%20lo%20faranno%20I%20segnali%20ricevuti%20vengono%20integrati%20e%20trasmessi%20al%20corpo%20cellulare%20del%20neurone%20per%20l'ulteriore%20elaborazione.%20L'assone%20%C3%A8%20principalmente%20responsabile%20della%20trasmissione%20del%20segnale%20di%20uscita%20del%20neurone.%20Quando%20un%20neurone%20%C3%A8%20attivato%2C%20trasmette%20segnali%20ad%20altri%20neuroni%20attraverso%20il%20suo%20assone.%20La%20sinapsi%20%C3%A8%20il%20punto%20di%20contatto%20tra%20due%20neuroni.%20Attraverso%20di%20essa%2C%20i%20segnali%20possono%20essere%20trasmessi%20tra%20neuroni%20attraverso%20neurotrasmettitori%20e%20ciascun%20neurone%20trasmette%20segnali%20attraverso%20il%20suo%20assone.%20Ogni%20sinapsi%20ha%20una%20forza%20specifica%20equivalente%20al%20peso%20della%20rete%20neurale.%20(Figura%201)%E3%80%80%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_1-1698831659059.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_1-1698831659059.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_1-1698831659059.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_1-1698831659059.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_1-1698831659059.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_1-1698831659059.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F58173i1B590D33D111E5CC%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_1-1698831659059.png%22%20alt%3D%22Michelle_Wu_1-1698831659059.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3EFigura%201%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3ENella%20rete%20neurale%20(Figura%201-2)%2C%20il%20perceptron%20%C3%A8%20un%20componente%20importante%2C%20che%20include%20input%2C%20somma%20ponderata%2C%20funzione%20di%20attivazione%20(funzioni%20di%20attivazione)%20e%20output%2C%20dove%20output%20%3D%20funzione%20di%20attivazione%3CSPAN%3E%20(%3C%2FSPAN%3E%3CSPAN%3E%20%E2%88%91%3C%2FSPAN%3E%3CSPAN%3E%3CEM%3E%3CSUB%3E%20io%3C%2FSUB%3E%3C%2FEM%3E%3C%2FSPAN%3E%3CSPAN%3E%3C%2FSPAN%3E%3CSPAN%3E%20(%3C%2FSPAN%3E%3CSPAN%3E%3CEM%3E%20w%3CSUB%3E%20io%3C%2FSUB%3E%3C%2FEM%3E%3C%2FSPAN%3E%3CSPAN%3E%3CSUB%3E%3C%2FSUB%3E%3C%2FSPAN%3E%3CSPAN%3E%20%C3%97%3C%2FSPAN%3E%3CSPAN%3E%3CEM%3E%20X%3CSUB%3E%20io%3C%2FSUB%3E%3C%2FEM%3E%3C%2FSPAN%3E%3CSPAN%3E%3CSUB%3E%3C%2FSUB%3E%3C%2FSPAN%3E%3CSPAN%3E%20)%3C%2FSPAN%3E%3CSPAN%3E%20%2B%3C%2FSPAN%3E%3CSPAN%3E%3CEM%3E%20B%3C%2FEM%3E%3C%2FSPAN%3E%3CSPAN%3E%20)%3C%2FSPAN%3E%3CSPAN%3E%20%2C%3C%2FSPAN%3E%3CSPAN%3E%20wi%3C%2FSPAN%3E%20%C3%A8%20il%20peso%2C%20xi%20%C3%A8%20il%20valore%20di%20input%20e%20b%20%C3%A8%20il%20bias.%20Di%20seguito%20%C3%A8%20riportato%20un%20diagramma%20schematico%20di%20una%20rete%20neurale%20a%20strato%20singolo%20e%20una%20semplice%20espressione%20di%20regressione%20lineare%20multipla%20quando%20la%20funzione%20di%20attivazione%20%C3%A8%20una%20funzione%20lineare%20(Figura%202).%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_2-1698831659087.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_2-1698831659087.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_2-1698831659087.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_2-1698831659087.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_2-1698831659087.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_2-1698831659087.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F58172i040D6EBEC3F29086%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_2-1698831659087.png%22%20alt%3D%22Michelle_Wu_2-1698831659087.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3EFigura%202%3A%20Espressione%20di%20regressione%20lineare%20multipla%20semplice%20quando%20la%20funzione%20di%20attivazione%20%C3%A8%20una%20funzione%20lineare%3C%2FP%3E%0A%3CH2%20id%3D%22toc-hId--784679963%22%20id%3D%22toc-hId--784589758%22%20id%3D%22toc-hId--784589758%22%20id%3D%22toc-hId--784589758%22%20id%3D%22toc-hId--784589758%22%20id%3D%22toc-hId--784589758%22%3E%3CSTRONG%3E3%3C%2FSTRONG%3E%3CSTRONG%3E%20Tipo%3C%2FSTRONG%3E%3CSTRONG%3E%20JMP%3C%2FSTRONG%3E%3CSTRONG%3E%20La%20funzione%20di%20attivazione%20utilizzata%20all'interno%3C%2FSTRONG%3E%3C%2FH2%3E%0A%3COL%3E%0A%3CLI%3ETanH%3A%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_3-1698831659088.png%22%20style%3D%22width%3A%2039px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_3-1698831659088.png%22%20style%3D%22width%3A%2039px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_3-1698831659088.png%22%20style%3D%22width%3A%2039px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_3-1698831659088.png%22%20style%3D%22width%3A%2039px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_3-1698831659088.png%22%20style%3D%22width%3A%2039px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_3-1698831659088.png%22%20style%3D%22width%3A%2039px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F58175iDEC914125C219FCC%2Fimage-dimensions%2F39x35%3Fv%3Dv2%22%20width%3D%2239%22%20height%3D%2235%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_3-1698831659088.png%22%20alt%3D%22Michelle_Wu_3-1698831659088.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3CSPAN%3E%20%3A%20La%20funzione%20tangente%20iperbolica%20%C3%A8%20una%20funzione%20a%20forma%20di%20S%2C%20compresa%20tra%20-1%20e%201.%20%C3%88%20la%20versione%20centralizzata%20e%20in%20scala%20della%20funzione%20logistica%2C%20dove%20x%20%C3%A8%20una%20combinazione%20lineare%20di%20variabili%20di%20input%20(Figura%203)%20e%20il%20suo%20output%20%C3%A8%20centralizzato%2C%20Quando%20Y%20%C3%A8%20una%20variabile%20categoriale%20o%20una%20relazione%20non%20lineare%2C%20pu%C3%B2%20essere%20utilizzata%20come%20funzione%20di%20attivazione%2C%20che%20%C3%A8%20anche%20una%20funzione%20di%20attivazione%20comunemente%20usata.%20Il%20gradiente%20dei%20valori%20estremi%20-1%20e%201%20su%20entrambe%20le%20estremit%C3%A0%20%C3%A8%20vicino%20a%200%20%2C%20che%20potrebbe%20rallentare%20la%20velocit%C3%A0%20di%20apprendimento.%3C%2FSPAN%3E%3CBR%20%2F%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_4-1698831659092.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_4-1698831659092.png%22%20style%3D%22width%3A%20260px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_4-1698831659092.png%22%20style%3D%22width%3A%20260px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_4-1698831659092.png%22%20style%3D%22width%3A%20260px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_4-1698831659092.png%22%20style%3D%22width%3A%20260px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_4-1698831659092.png%22%20style%3D%22width%3A%20260px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F58174i6E489309E8156C12%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_4-1698831659092.png%22%20alt%3D%22Michelle_Wu_4-1698831659092.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_5-1698831659140.png%22%20style%3D%22width%3A%20234px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_5-1698831659140.png%22%20style%3D%22width%3A%20234px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_5-1698831659140.png%22%20style%3D%22width%3A%20234px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_5-1698831659140.png%22%20style%3D%22width%3A%20234px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_5-1698831659140.png%22%20style%3D%22width%3A%20234px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_5-1698831659140.png%22%20style%3D%22width%3A%20234px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F58176iFDF6FB9ABAEFB131%2Fimage-dimensions%2F234x221%3Fv%3Dv2%22%20width%3D%22234%22%20height%3D%22221%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_5-1698831659140.png%22%20alt%3D%22Michelle_Wu_5-1698831659140.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FLI%3E%0A%3C%2FOL%3E%0A%3CP%3EFigura%203%3A%20combinazione%20lineare%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3COL%20start%3D%222%22%3E%0A%3CLI%3ELineare%3A%20detta%20anche%20funzione%20identit%C3%A0%2C%20non%20subisce%20il%20processo%20di%20conversione%20delle%20variabili%20(Figura%204)%2C%20vale%20a%20dire%3A%3CSTRONG%3E%20Le%20variabili%20mostrano%20una%20relazione%20lineare%20e%20lo%20scenario%20di%20utilizzo%20abituale%20%C3%A8%20ridurre%20la%20dimensione%20delle%20variabili%20di%20input.%3C%2FSTRONG%3E%20.%3CBR%20%2F%3E%3CSPAN%3E%20Figura%204%3A%3C%2FSPAN%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_6-1698831659142.png%22%20style%3D%22width%3A%20218px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_6-1698831659142.png%22%20style%3D%22width%3A%20218px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_6-1698831659142.png%22%20style%3D%22width%3A%20218px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_6-1698831659142.png%22%20style%3D%22width%3A%20218px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_6-1698831659142.png%22%20style%3D%22width%3A%20218px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_6-1698831659142.png%22%20style%3D%22width%3A%20218px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F58177i6E02C73458DAA868%2Fimage-dimensions%2F218x218%3Fv%3Dv2%22%20width%3D%22218%22%20height%3D%22218%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_6-1698831659142.png%22%20alt%3D%22Michelle_Wu_6-1698831659142.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_7-1698831659190.png%22%20style%3D%22width%3A%20219px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_7-1698831659190.png%22%20style%3D%22width%3A%20219px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_7-1698831659190.png%22%20style%3D%22width%3A%20219px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_7-1698831659190.png%22%20style%3D%22width%3A%20219px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_7-1698831659190.png%22%20style%3D%22width%3A%20219px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_7-1698831659190.png%22%20style%3D%22width%3A%20219px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F58179i5C41C59159DA2EDD%2Fimage-dimensions%2F219x208%3Fv%3Dv2%22%20width%3D%22219%22%20height%3D%22208%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_7-1698831659190.png%22%20alt%3D%22Michelle_Wu_7-1698831659190.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FLI%3E%0A%3C%2FOL%3E%0A%3COL%20start%3D%223%22%3E%0A%3CLI%3EGaussiana%3A%20Funzione%20gaussiana%3A%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_8-1698831659191.png%22%20style%3D%22width%3A%2037px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_8-1698831659191.png%22%20style%3D%22width%3A%2037px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_8-1698831659191.png%22%20style%3D%22width%3A%2037px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_8-1698831659191.png%22%20style%3D%22width%3A%2037px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_8-1698831659191.png%22%20style%3D%22width%3A%2037px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_8-1698831659191.png%22%20style%3D%22width%3A%2037px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F58178iA63E09C417925009%2Fimage-dimensions%2F37x27%3Fv%3Dv2%22%20width%3D%2237%22%20height%3D%2227%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_8-1698831659191.png%22%20alt%3D%22Michelle_Wu_8-1698831659191.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3CSPAN%3E%20%2C%20appartiene%20alla%20funzione%20base%20radiale%2C%20che%20%C3%A8%20una%20funzione%20non%20lineare%20ed%20%C3%A8%20applicabile%20quando%20il%20piano%20di%20reazione%20%C3%A8%20un%20piano%20gaussiano%20(Figura%205).%20Lo%20svantaggio%20%C3%A8%20che%20la%20velocit%C3%A0%20di%20aggiornamento%20del%20peso%20%C3%A8%20lenta%2C%20il%20che%20influisce%20sull'efficienza%20e%20sull'effetto%20dell'allenamento.%20Rispetto%20a%20Tanh%2C%20la%20frequenza%20%C3%A8%20inferiore.%3C%2FSPAN%3E%3C%2FLI%3E%0A%3C%2FOL%3E%0A%3CP%3EFigura%205-1%3A%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_9-1698831659194.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_9-1698831659194.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_9-1698831659194.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_9-1698831659194.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_9-1698831659194.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_9-1698831659194.png%22%20style%3D%22width%3A%20270px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F58180iFC30F6E5F0034AC2%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_9-1698831659194.png%22%20alt%3D%22Michelle_Wu_9-1698831659194.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EFigura%205-2%3A%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_10-1698831659244.png%22%20style%3D%22width%3A%20348px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_10-1698831659244.png%22%20style%3D%22width%3A%20348px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_10-1698831659244.png%22%20style%3D%22width%3A%20348px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_10-1698831659244.png%22%20style%3D%22width%3A%20348px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_10-1698831659244.png%22%20style%3D%22width%3A%20348px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_10-1698831659244.png%22%20style%3D%22width%3A%20348px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F58182i468ADFD70DFF8619%2Fimage-dimensions%2F348x330%3Fv%3Dv2%22%20width%3D%22348%22%20height%3D%22330%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_10-1698831659244.png%22%20alt%3D%22Michelle_Wu_10-1698831659244.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3ESuccessivamente%2C%20spiegheremo%20come%20impostare%20la%20rete%20neurale%20in%20JMP%3A%20(Figura%206)%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_11-1698831659273.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_11-1698831659273.png%22%20style%3D%22width%3A%20576px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_11-1698831659273.png%22%20style%3D%22width%3A%20576px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_11-1698831659273.png%22%20style%3D%22width%3A%20576px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_11-1698831659273.png%22%20style%3D%22width%3A%20576px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_11-1698831659273.png%22%20style%3D%22width%3A%20576px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F58181iA38A3F9EADEB95B3%2Fimage-size%2Flarge%3Fv%3Dv2%26amp%3Bpx%3D999%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_11-1698831659273.png%22%20alt%3D%22Michelle_Wu_11-1698831659273.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3EFigura%206%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EIl%20metodo%20di%20convalida%20iniziale%20viene%20utilizzato%20per%20valutare%20la%20capacit%C3%A0%20di%20spiegazione%20del%20modello%20del%20set%20di%20addestramento%20e%20del%20set%20di%20validazione.%20Vengono%20forniti%20due%20metodi%20di%20convalida%20incrociata%2C%20KFold%20e%20Holdback%2C%20poich%C3%A9%20KFold%20utilizza%20tutti%20i%20dati%20per%20la%20verifica%20e%20fornisce%20stime%20multiple%2C%20il%20che%20aiuta%20la%20stabilit%C3%A0%20della%20valutazione%20del%20modello.%20%2C%20%C3%A8%20possibile%20evitare%20risultati%20distorti%20per%20campioni%20piccoli%2C%20il%20tempo%20di%20esecuzione%20%C3%A8%20pi%C3%B9%20lungo%20e%20il%20tempo%20di%20esecuzione%20Holdback%20%C3%A8%20breve%2C%20ma%20la%20verifica%20dei%20dati%20avr%C3%A0%20una%20variabilit%C3%A0%20relativamente%20elevata.%3C%2FP%3E%0A%3CP%3EIl%20numero%20di%20tour%20riportato%20di%20seguito%20rappresenta%20il%20numero%20di%20volte%20in%20cui%20riavviare%20il%20processo%20di%20addestramento%20del%20modello%20per%20evitare%20che%20il%20modello%20rientri%20nel%20valore%20ottimale%20locale%20anzich%C3%A9%20nel%20valore%20ottimale%20globale.%20In%20termini%20di%20impostazioni%20del%20livello%20nascosto%2C%20JMP%20Standard%20Edition%20fornisce%20il%20livello%20nascosto%20a%20livello%20singolo%20JMP%20Pro%20fornisce%20un'impostazione%20del%20livello%20nascosto%20a%20doppio%20livello.%20L'utilizzo%20di%20pi%C3%B9%20livelli%20nascosti%20solitamente%20serve%20per%20esplorare%20complesse%20relazioni%20non%20lineari%20quando%20la%20struttura%20dei%20dati%20%C3%A8%20complessa%20o%20i%20dati%20sono%20gerarchici%20e%20sequenziali%2C%20come%20variabili%20di%20diverso%20tipo%20e%20numerose%20origini%20dati%20%3B%20Lo%20scopo%20di%20impostare%20pi%C3%B9%20nodi%20%C3%A8%20apprendere%20pi%C3%B9%20modelli.%20Quando%20ci%20sono%20pi%C3%B9%20variabili%20di%20input%2C%20i%20nodi%20che%20devono%20essere%20impostati%20devono%20essere%20migliorati.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EPer%20l'overfitting%2C%20JMP%20fornisce%20il%20metodo%20di%20penalit%C3%A0%20come%20segue%3A%3C%2FP%3E%0A%3COL%3E%0A%3CLI%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_12-1698831659274.png%22%20style%3D%22width%3A%2039px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_12-1698831659274.png%22%20style%3D%22width%3A%2039px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_12-1698831659274.png%22%20style%3D%22width%3A%2039px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_12-1698831659274.png%22%20style%3D%22width%3A%2039px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_12-1698831659274.png%22%20style%3D%22width%3A%2039px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_12-1698831659274.png%22%20style%3D%22width%3A%2039px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F58184iB529744DFF7F7848%2Fimage-dimensions%2F39x25%3Fv%3Dv2%22%20width%3D%2239%22%20height%3D%2225%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_12-1698831659274.png%22%20alt%3D%22Michelle_Wu_12-1698831659274.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3CSPAN%3E(Al%20quadrato)%3A%20utilizzato%20quando%20si%20presuppone%20che%20la%20maggior%20parte%20delle%20variabili%20di%20input%20abbiano%20un%20impatto%20sul%20modello.%3C%2FSPAN%3E%3C%2FLI%3E%0A%3CLI%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_13-1698831659275.png%22%20style%3D%22width%3A%2040px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_13-1698831659275.png%22%20style%3D%22width%3A%2040px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_13-1698831659275.png%22%20style%3D%22width%3A%2040px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_13-1698831659275.png%22%20style%3D%22width%3A%2040px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_13-1698831659275.png%22%20style%3D%22width%3A%2040px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_13-1698831659275.png%22%20style%3D%22width%3A%2040px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F58183iA1C5F1FD22C76A70%2Fimage-dimensions%2F40x22%3Fv%3Dv2%22%20width%3D%2240%22%20height%3D%2222%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_13-1698831659275.png%22%20alt%3D%22Michelle_Wu_13-1698831659275.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3CSPAN%3E(Assoluto)%20o%3C%2FSPAN%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_14-1698831659278.png%22%20style%3D%22width%3A%2044px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_14-1698831659278.png%22%20style%3D%22width%3A%2044px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_14-1698831659278.png%22%20style%3D%22width%3A%2044px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_14-1698831659278.png%22%20style%3D%22width%3A%2044px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_14-1698831659278.png%22%20style%3D%22width%3A%2044px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_14-1698831659278.png%22%20style%3D%22width%3A%2044px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F58185iBC890B770B772561%2Fimage-dimensions%2F44x37%3Fv%3Dv2%22%20width%3D%2244%22%20height%3D%2237%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_14-1698831659278.png%22%20alt%3D%22Michelle_Wu_14-1698831659278.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3CSPAN%3E%20(Decadimento%20del%20peso)%3A%20utilizzato%20quando%20sono%20presenti%20molte%20variabili%20di%20input%2C%20ma%20si%20prevede%20che%20solo%20alcune%20di%20esse%20influenzino%20il%20modello.%3C%2FSPAN%3E%3C%2FLI%3E%0A%3C%2FOL%3E%0A%3CP%3EJMP%20fornisce%20inoltre%20opzioni%20per%20la%20conversione%20delle%20variabili%2C%20come%20Trasforma%20covariate%2C%20che%20converte%20le%20variabili%20di%20input%20in%20distribuzioni%20approssimativamente%20normali.%20I%20vantaggi%20della%20conversione%20possono%20far%20convergere%20pi%C3%B9%20velocemente%20l'addestramento%20ed%20evitare%20la%20scomparsa%20del%20gradiente.%3CSUP%3E%201%3C%2FSUP%3E%20problemi%2C%20ecc.%20Allo%20stesso%20modo%2C%20per%20le%20situazioni%20in%20cui%20la%20variabile%20di%20output%20ha%20una%20distribuzione%20distorta%2C%20una%20coda%20spessa%2C%20ecc.%2C%20%C3%A8%20possibile%20utilizzare%20l'opzione%20Robust%20Fit%20per%20evitare%20l'influenza%20dei%20valori%20anomali.%3C%2FP%3E%0A%3CH2%20id%3D%22toc-hId-958130372%22%20id%3D%22toc-hId-958220577%22%20id%3D%22toc-hId-958220577%22%20id%3D%22toc-hId-958220577%22%20id%3D%22toc-hId-958220577%22%20id%3D%22toc-hId-958220577%22%3E%3CSTRONG%3EIl%20processo%20di%20adattamento%20del%20modello%3C%2FSTRONG%3E%3C%2FH2%3E%0A%3CP%3ESulla%20base%20della%20descrizione%20di%20cui%20sopra%2C%20descrivere%20brevemente%20il%20processo%20di%20adattamento%20del%20modello%3A%3C%2FP%3E%0A%3CP%3EUtilizza%20la%20funzione%20di%20verosimiglianza%20pi%C3%B9%20la%20funzione%20di%20penalit%C3%A0%20e%20utilizza%20il%20metodo%20di%20iterazione%20quasi-Newton%2C%20noto%20anche%20come%20BFGS.%3CSUP%3E%202%3C%2FSUP%3E%20Metodo%2C%20trovare%20il%20punto%20in%20cui%20la%20funzione%20di%20perdita%20pi%C3%B9%20la%20funzione%20di%20penalit%C3%A0%20(se%20considerata)%20raggiunge%20il%20minimo%20(Figura%207)%20per%20regolare%20i%20pesi%20dei%20parametri.%20In%20generale%2C%20il%20punto%20minimo%20pu%C3%B2%20essere%20trovato%20utilizzando%20la%20convalida%20incrociata%20circa%2020-50%20volte.%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_15-1698831659364.png%22%20style%3D%22width%3A%20331px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_15-1698831659364.png%22%20style%3D%22width%3A%20331px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_15-1698831659364.png%22%20style%3D%22width%3A%20331px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_15-1698831659364.png%22%20style%3D%22width%3A%20331px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_15-1698831659364.png%22%20style%3D%22width%3A%20331px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_15-1698831659364.png%22%20style%3D%22width%3A%20331px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F58187i5A801E2111E29BB7%2Fimage-dimensions%2F331x311%3Fv%3Dv2%22%20width%3D%22331%22%20height%3D%22311%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_15-1698831659364.png%22%20alt%3D%22Michelle_Wu_15-1698831659364.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3EFigura%207%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EQuando%20JMP%20adatta%20il%20modello%2C%20%C3%A8%20possibile%20scegliere%20anche%20un%20metodo%20Boosting.%20I%20tassi%20di%20apprendimento%20sono%20compresi%20tra%200%20e%201%20e%20il%20numero%20di%20modelli%20da%20adattare%20pu%C3%B2%20essere%20regolato.%20Viene%20sommato%20da%20una%20serie%20di%20piccoli%20modelli.%20Nel%20modello%20finale%2C%20ciascun%20modello%20piccolo%20viene%20adattato%20in%20base%20all'errore%20del%20modello%20precedente%2C%20tenendo%20conto%20del%20numero%20di%20modelli%20adattati%20e%20se%20l'interpretabilit%C3%A0%20complessiva%20del%20modello%20non%20pu%C3%B2%20pi%C3%B9%20essere%20migliorata%20dopo%20la%20convalida%20incrociata.%20Per%20i%20modelli%20piccoli%2C%20in%20genere%2C%20solo%20un%20vengono%20impostati%20un%20singolo%20strato%20nascosto%20e%20uno%20o%20due%20nodi%2C%20che%20ha%20il%20vantaggio%20di%20migliorare%20la%20precisione%20del%20modello.%20(Figura%208)%3C%2Fimg%3E%3C%2FP%3E%0A%3CP%3EL'impostazione%20del%20tasso%20di%20apprendimento%20e%20del%20numero%20di%20modelli%20%C3%A8%20generalmente%20tale%20che%20quanto%20pi%C3%B9%20il%20tasso%20di%20apprendimento%20%C3%A8%20vicino%20a%201%2C%20tanto%20minore%20dovrebbe%20essere%20il%20numero%20di%20modelli.%20Quanto%20pi%C3%B9%20complesso%20%C3%A8%20il%20modello%20piccolo%20utilizzando%20il%20metodo%20Boosting%2C%20il%20significato%20del%20bonus%20andr%C3%A0%20perso.JMP%20non%20consente%20l'impostazione%20di%20due%20livelli.Livello%20nascosto%20combinato%20con%20il%20metodo%20Boosting.%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_16-1698831659397.png%22%20style%3D%22width%3A%20492px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_16-1698831659397.png%22%20style%3D%22width%3A%20492px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_16-1698831659397.png%22%20style%3D%22width%3A%20492px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_16-1698831659397.png%22%20style%3D%22width%3A%20492px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_16-1698831659397.png%22%20style%3D%22width%3A%20492px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_16-1698831659397.png%22%20style%3D%22width%3A%20492px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F58186i71749FBC0EDBFC03%2Fimage-dimensions%2F492x269%3Fv%3Dv2%22%20width%3D%22492%22%20height%3D%22269%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_16-1698831659397.png%22%20alt%3D%22Michelle_Wu_16-1698831659397.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3EFigura%208%3C%2FP%3E%0A%3CH2%20id%3D%22toc-hId--1594026589%22%20id%3D%22toc-hId--1593936384%22%20id%3D%22toc-hId--1593936384%22%20id%3D%22toc-hId--1593936384%22%20id%3D%22toc-hId--1593936384%22%20id%3D%22toc-hId--1593936384%22%3E%3CSTRONG%3ELitografia%3C%2FSTRONG%3E%3CSTRONG%3E%20%2F%3C%2FSTRONG%3E%3CSTRONG%3E%20Condivisione%20dei%20casi%20di%20incisione%3C%2FSTRONG%3E%3C%2FH2%3E%0A%3CP%3EEsempi%20citati%20di%20seguito%20tratti%20dal%20JMP%20Discovery%20Summit%20del%202022%3CSUP%3E%203%3C%2FSUP%3E%20%2C%20Difetti%20sui%20fianchi%20a%20volte%20si%20verificano%20durante%20la%20fase%20di%20litografia%2Fincisione%20(Figura%209).%20%C3%88%20necessario%20utilizzare%20un%20microscopio%20elettronico%20a%20scansione%20SEM%20(microscopio%20elettronico%20a%20scansione)%20per%20vedere%20se%20la%20larghezza%20della%20linea%20rientra%20nelle%20specifiche.%20Di%20solito%20%C3%A8%20difficile%20individuare%20l'anomalia%20perch%C3%A9%20%C3%A8%20difficile%20misurarlo%20esattamente.La%20posizione%20del%20difetto%20rilevato.%20Pertanto%2C%20viene%20utilizzato%20un%20software%20open%20source%20per%20convertire%20prima%20le%20immagini%20in%20indicatori%20di%20dati%20di%20immagine%2C%20quindi%20viene%20utilizzato%20JMP%20per%20l'analisi%20e%20la%20modellazione.%20In%20questo%20momento%2C%20la%20Y%20corrispondente%20%C3%A8%20una%20variabile%20categoriale%20di%20buono%20o%20cattivo%20e%20X%20corrisponde%20a%20ciascun%20dato%20di%20immagine%20indicatore%20(Figura%2010)%20(per%20la%20descrizione%20dell'indicatore%2C%20fare%20riferimento%20all'ultimo%20collegamento)%2C%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_17-1698831659738.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_17-1698831659738.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_17-1698831659738.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_17-1698831659738.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_17-1698831659738.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_17-1698831659738.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F58188iACAF3E1F221BDCC3%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_17-1698831659738.png%22%20alt%3D%22Michelle_Wu_17-1698831659738.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3EFigura%209%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_18-1698831659784.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_18-1698831659784.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_18-1698831659784.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_18-1698831659784.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_18-1698831659784.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_18-1698831659784.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F58191i6B4BB18A0AEE737C%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_18-1698831659784.png%22%20alt%3D%22Michelle_Wu_18-1698831659784.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3EFigura%2010%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EIl%20primo%20passo%20%C3%A8%20selezionare%20le%20variabili%20Y%20e%20X%20(Figura%2011)%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_19-1698831659819.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_19-1698831659819.png%22%20style%3D%22width%3A%20910px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_19-1698831659819.png%22%20style%3D%22width%3A%20910px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_19-1698831659819.png%22%20style%3D%22width%3A%20910px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_19-1698831659819.png%22%20style%3D%22width%3A%20910px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_19-1698831659819.png%22%20style%3D%22width%3A%20910px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F58189i0CCE9CE31FABB19F%2Fimage-size%2Flarge%3Fv%3Dv2%26amp%3Bpx%3D999%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_19-1698831659819.png%22%20alt%3D%22Michelle_Wu_19-1698831659819.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3EFigura%2011%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3ENella%20seconda%20fase%2C%20viene%20selezionato%20KFold%20per%20evitare%20piccole%20distorsioni%20nella%20stima%20del%20campione%2C%20vengono%20selezionati%20un%20singolo%20strato%20nascosto%20e%20la%20funzione%20di%20attivazione%20TanH%20per%20convertire%20le%20variabili%20di%20input%20rilevanti%20in%20variabili%20(Figura%2012)%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_20-1698831659855.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_20-1698831659855.png%22%20style%3D%22width%3A%20383px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_20-1698831659855.png%22%20style%3D%22width%3A%20383px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_20-1698831659855.png%22%20style%3D%22width%3A%20383px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_20-1698831659855.png%22%20style%3D%22width%3A%20383px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_20-1698831659855.png%22%20style%3D%22width%3A%20383px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F58190i92E8537EEA17443E%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_20-1698831659855.png%22%20alt%3D%22Michelle_Wu_20-1698831659855.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3EFigura%2012%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EIl%20terzo%20passaggio%20consiste%20nel%20determinare%20indicatori%20quali%20la%20risoluzione%20degli%20errori%2C%20l'accuratezza%20dei%20difetti%20di%20previsione%20e%20Rsquare%20(Figura%2013)%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22%E8%9E%A2%E5%B9%95%E6%93%B7%E5%8F%96%E7%95%AB%E9%9D%A2%202023-11-01%20174509.png%22%20style%3D%22width%3A%20586px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22%E8%9E%A2%E5%B9%95%E6%93%B7%E5%8F%96%E7%95%AB%E9%9D%A2%202023-11-01%20174509.png%22%20style%3D%22width%3A%20586px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22%E8%9E%A2%E5%B9%95%E6%93%B7%E5%8F%96%E7%95%AB%E9%9D%A2%202023-11-01%20174509.png%22%20style%3D%22width%3A%20586px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22%E8%9E%A2%E5%B9%95%E6%93%B7%E5%8F%96%E7%95%AB%E9%9D%A2%202023-11-01%20174509.png%22%20style%3D%22width%3A%20586px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22%E8%9E%A2%E5%B9%95%E6%93%B7%E5%8F%96%E7%95%AB%E9%9D%A2%202023-11-01%20174509.png%22%20style%3D%22width%3A%20586px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22%E8%9E%A2%E5%B9%95%E6%93%B7%E5%8F%96%E7%95%AB%E9%9D%A2%202023-11-01%20174509.png%22%20style%3D%22width%3A%20586px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F58197i71FE4354DFCFF60A%2Fimage-size%2Flarge%3Fv%3Dv2%26amp%3Bpx%3D999%22%20role%3D%22button%22%20title%3D%22%E8%9E%A2%E5%B9%95%E6%93%B7%E5%8F%96%E7%95%AB%E9%9D%A2%202023-11-01%20174509.png%22%20alt%3D%22%E8%9E%A2%E5%B9%95%E6%93%B7%E5%8F%96%E7%95%AB%E9%9D%A2%202023-11-01%20174509.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3EIl%20quarto%20passaggio%20consiste%20nel%20trovare%20i%20parametri%20che%20hanno%20un%20impatto%20significativo%20sul%20peso%20in%20base%20al%20profiler%20di%20previsione%20(Figura%2014)%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_22-1698831660044.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_22-1698831660044.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_22-1698831660044.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_22-1698831660044.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_22-1698831660044.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_22-1698831660044.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F58194i14BFA30B02BBBB80%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_22-1698831660044.png%22%20alt%3D%22Michelle_Wu_22-1698831660044.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E(Figura%2014)%3C%2FP%3E%0A%3CP%3EIl%20quinto%20passaggio%20consiste%20nel%20memorizzare%20la%20formula%20di%20previsione%20e%20visualizzare%20i%20pesi%20(Figura%2015)%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_23-1698831660069.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_23-1698831660069.png%22%20style%3D%22width%3A%20177px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_23-1698831660069.png%22%20style%3D%22width%3A%20177px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_23-1698831660069.png%22%20style%3D%22width%3A%20177px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_23-1698831660069.png%22%20style%3D%22width%3A%20177px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_23-1698831660069.png%22%20style%3D%22width%3A%20177px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F58192iA5DCB000203DFEE3%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_23-1698831660069.png%22%20alt%3D%22Michelle_Wu_23-1698831660069.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_24-1698831660087.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_24-1698831660087.png%22%20style%3D%22width%3A%20238px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_24-1698831660087.png%22%20style%3D%22width%3A%20238px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_24-1698831660087.png%22%20style%3D%22width%3A%20238px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_24-1698831660087.png%22%20style%3D%22width%3A%20238px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_24-1698831660087.png%22%20style%3D%22width%3A%20238px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F58195iF6CE1AFEE544AD4E%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_24-1698831660087.png%22%20alt%3D%22Michelle_Wu_24-1698831660087.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_25-1698831660169.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_25-1698831660169.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_25-1698831660169.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_25-1698831660169.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_25-1698831660169.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_25-1698831660169.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F58196i5DA3382475595D14%2Fimage-size%2Flarge%3Fv%3Dv2%26amp%3Bpx%3D999%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_25-1698831660169.png%22%20alt%3D%22Michelle_Wu_25-1698831660169.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E(Figura%2015)%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EInfine%2C%20riassumiamo%20alcune%20regole%20pratiche%20per%20la%20configurazione%20di%20JMP%20su%20reti%20neurali%2C%20come%20segue%3A%3C%2FP%3E%0A%3COL%3E%0A%3CLI%3ELe%20funzioni%20di%20attivazione%20lineare%20sono%20solitamente%20abbinate%20a%20variabili%20di%20input%2C%20mentre%20le%20variabili%20di%20output%20sono%20solitamente%20abbinate%20a%20funzioni%20di%20attivazione%20non%20lineare%2C%20soprattutto%20quando%20ci%20sono%20troppe%20variabili%20e%20si%20desidera%20ridurre%20la%20dimensione.%3C%2FLI%3E%0A%3CLI%3EQuando%20pi%C3%B9%20nodi%20possono%20portare%20a%20un%20overfitting%2C%20%C3%A8%20possibile%20utilizzare%20come%20set%20point%20iniziale%20il%20numero%20di%20nodi%20nello%20strato%20nascosto%20inferiore%20o%20uguale%20al%20numero%20di%20variabili%20di%20input.%3C%2FLI%3E%0A%3CLI%3EI%20modelli%20di%20reti%20neurali%20di%20piccole%20dimensioni%20hanno%20una%20migliore%20velocit%C3%A0%20di%20calcolo%20e%20una%20migliore%20stabilit%C3%A0.%20Se%20la%20precisione%20della%20previsione%20%C3%A8%20simile%20a%20quella%20dei%20modelli%20di%20grandi%20dimensioni%2C%20i%20modelli%20piccoli%20dovrebbero%20essere%20i%20principali.%3C%2FLI%3E%0A%3CLI%3EQuando%20il%20numero%20di%20nodi%20o%20livelli%20nascosti%20nel%20livello%20nascosto%20della%20variabile%20di%20input%20%C3%A8%20troppo%20grande%2C%20pu%C3%B2%20essere%20introdotta%20una%20complessit%C3%A0%20non%20necessaria%2C%20portando%20a%20un%20overfitting%20del%20modello.%20%C3%88%20possibile%20utilizzare%20metodi%20di%20convalida%20incrociata%20per%20confermare%20e%20modificare%20le%20impostazioni.%3C%2FLI%3E%0A%3CLI%3EEliminare%20il%20pi%C3%B9%20possibile%20i%20valori%20anomali%20pu%C3%B2%20evitare%20errori%20di%20stima%20e%20rendere%20le%20previsioni%20pi%C3%B9%20efficienti.%3C%2FLI%3E%0A%3CLI%3ELe%20prestazioni%20di%20bilanciamento%20dei%20dati%20migliorano%20l'accuratezza%20della%20previsione.%20Ad%20esempio%2C%20quando%20Y%20%C3%A8%20una%20variabile%20categoriale%2C%20il%20numero%20di%20ciascuna%20categoria%20dovrebbe%20essere%20il%20pi%C3%B9%20coerente%20possibile.%3C%2FLI%3E%0A%3C%2FOL%3E%0A%3CP%3ERete%20neurale%2C%20come%20metodo%20di%20apprendimento%20supervisionato%20comune%2C%20in%20questo%20articolo%20riassumiamo%20i%20componenti%20principali%20e%20il%20processo%20di%20formazione%20della%20rete%20neurale%2C%20tra%20cui%20percettrone%2C%20funzione%20di%20attivazione%20e%20configurazione%20del%20modello.%20Benvenuto%3CA%20href%3D%22https%3A%2F%2Fwww.jmp.com%2Fzh_tw%2Fdownload-jmp-free-trial.html%22%20target%3D%22_blank%22%20rel%3D%22noopener%20noreferrer%22%3E%20Prova%20JMP%20gratuitamente%20per%2030%20giorni%3C%2FA%3E%20%2C%20sviluppa%20diversi%20modelli%20di%20apprendimento%20AI%20per%20la%20tua%20azienda.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3ELettura%20consigliata%3A%3C%2FP%3E%0A%3CUL%3E%0A%3CLI%3E%E3%80%90articolo%E3%80%91%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2FJMP-Blog%2F%25E6%258F%2590%25E9%2580%259F%25E5%25A2%259E%25E6%2595%2588-%25E7%25A5%259E%25E7%25B6%2593%25E7%25B6%25B2%25E8%25B7%25AF%25E5%258A%25A9%25E5%258A%259B%25E4%25BC%2581%25E6%25A5%25AD%25E9%2581%258B%25E7%2587%259F%25E6%259B%25B4%25E9%25AB%2598%25E6%2595%2588%2Fba-p%2F214735%3FtrMode%3Dsource%22%20target%3D%22_blank%22%3E%20Per%20aumentare%20la%20velocit%C3%A0%20e%20l%E2%80%99efficienza%2C%20le%20reti%20neurali%20aiutano%20le%20aziende%20a%20operare%20in%20modo%20pi%C3%B9%20efficiente%3C%2FA%3E%3C%2FLI%3E%0A%3CLI%3E%E3%80%90articolo%E3%80%91%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2FJMP-Blog%2F%25E9%259B%2599%25E5%258D%2581%25E4%25B8%2580%25E6%2595%25B8%25E6%2593%259A%25E8%25A7%25A3%25E5%25AF%2586-%25E9%259B%25BB%25E5%2595%2586%25E9%258A%25B7%25E5%2594%25AE%25E9%25A1%258D%25E8%2588%2587%25E5%2593%25AA%25E4%25BA%259B%25E5%259B%25A0%25E7%25B4%25A0%25E6%259C%2589%25E9%2597%259C-%25E6%2595%25B8%25E6%2593%259A%25E5%2588%2586%25E6%259E%2590%25E5%2591%258A%25E8%25A8%25B4%25E4%25BD%25A0%2Fba-p%2F435832%3FtrMode%3Dsource%22%20target%3D%22_blank%22%3E%20Decrittazione%20dei%20dati%20Double%20Eleven%3A%20quali%20fattori%20sono%20legati%20alle%20vendite%20e-commerce%3F%20Te%20lo%20dice%20l%E2%80%99analisi%20dei%20dati%3C%2FA%3E%3C%2FLI%3E%0A%3CLI%3E%E3%80%90video%E3%80%91%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2FJMP-Blog%2F%25E6%25A9%259F%25E5%2599%25A8%25E5%25AD%25B8%25E7%25BF%2592-%25E7%25B5%25B1%25E8%25A8%2588%25E5%2588%2586%25E6%259E%2590-%25E4%25B8%25BB%25E6%2588%2590%25E5%2588%2586%25E5%2588%2586%25E6%259E%2590%25E8%2588%2587JMP%25E5%25AF%25A6%25E4%25BD%259C%2Fba-p%2F609432%3FtrMode%3Dsource%22%20target%3D%22_blank%22%3E%20Machine%20learning%2Fanalisi%20statistica%3A%20analisi%20delle%20componenti%20principali%20e%20implementazione%20di%20JMP%3C%2FA%3E%3C%2FLI%3E%0A%3C%2FUL%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3ERiferimenti%3CBR%20%2F%3E%3CBR%20%2F%3E%3C%2FP%3E%0A%3COL%3E%0A%3CLI%3E%3CA%20href%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2FDiscovery-Summit-Americas-2022%2FUse-Case-JMP-in-the-Building-of-an-Image-Analysis-Pipeline-2022%2Fta-p%2F518168%22%20target%3D%22_self%22%3ECaso%20d'uso%3A%20JMP%20nella%20creazione%20di%20una%20pipeline%20di%20analisi%20delle%20immagini%20(2022-US-30MP-1096)%3C%2FA%3E%3C%2FLI%3E%0A%3C%2FOL%3E%3C%2FLINGO-BODY%3E%3CLINGO-TEASER%20id%3D%22lingo-teaser-692896%22%20slang%3D%22zh-TW%22%3E%3CP%3EIn%20un%E2%80%99era%20in%20cui%20l%E2%80%99intelligenza%20artificiale%20sta%20diventando%20sempre%20pi%C3%B9%20popolare%2C%20l%E2%80%99apprendimento%20automatico%20gioca%20un%20ruolo%20importante%3A%20la%20maggior%20parte%20delle%20persone%20vede%20prodotti%20o%20concetti%20completati%20e%20la%20chiave%20%C3%A8%20in%20realt%C3%A0%20il%20metodo%20che%20sta%20dietro%20ad%20essi.%20Questo%20articolo%20condivider%C3%A0%20i%20concetti%20alla%20base%20dell'apprendimento%20automatico%20e%20come%20impostare%20il%20modello%20tramite%20il%20software%20di%20analisi%20statistica%20JMP.%3C%2FP%3E%3C%2FLINGO-TEASER%3E%3CLINGO-LABS%20id%3D%22lingo-labs-692896%22%20slang%3D%22zh-TW%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%3E%3CLINGO-LABEL%3EModellazione%20predittiva%20e%20machine%20learning%3C%2FLINGO-LABEL%3E%3C%2FLINGO-LABS%3E
Choose Language Hide Translation Bar
JMP_Taiwan
Level VI
Boosting神經網路:機器學習在微影/蝕刻製程中的應用案例分析

機器學習在現在AI越來越盛行的時代占了很重要的比重, 一般人看到的大多是已完成的產品或是概念, 背後使用的方法其實才是關鍵。機器學習在算法上也區分不同的兩個類別,分別為監督學習非監督學習。 常見機器學習方法歸類如下:

監督學習

非監督學習

決策樹

聚類

神經網路

自組織映射

隨機森林

關聯分析

迴歸分析

奇異值分解

K近鄰

 

樸素貝葉斯

 


監督學習中,一般使用已標記的數據集來進行訓練, 監督學習主要用於分類和建立迴歸關係; 而非監督學習使用未標記的數據進行訓練,目的是為了從數據中發現一些結構或模式, 大部分使用在聚類降維上。

認識機器學習:神經網路方法

今天要來介紹監督學習中大家很常聽到, 且發展歷史悠久的神經網路,在JMP中使用的是ANN(artificial neural network) 人工神經網路方法, 以人體比擬就是神經元概念,神經元包含細胞體、樹突、軸突,樹突主要功能是接收來自其他神經元的信號,這些信號會透過突觸傳遞到樹突上,樹突將接收到的信號整合後傳遞給神經元細胞體進一步處理 ,軸突主要負責傳遞神經元的輸出信號。當神經元被激活,它會通過軸突傳遞信號到其他神經元,突觸是兩個神經元之間的接觸點,透過它,神經元之間可以通過神經傳導物質來傳遞信號,而每個突觸都有一個特定的強度相當於神經網路的權重。(圖1) 

Michelle_Wu_1-1698831659059.png

圖1

 

在神經網路(圖1-2)中,感知器(Perceptron)是一個重要的組成部分,它包含輸入、加權加總、激活函數(Activation functions)、輸出,當中輸出=激活函數(i(wi×xi)+b)wi為權重,xi為輸入值,b為偏差(bias),以下為單層神經網路示意圖,激活函數為線性函數時的簡單多元線性回歸表達式(圖2)。

Michelle_Wu_2-1698831659087.png

圖2: 激活函數為線性函數時的簡單多元線性回歸表達式

3JMP內使用的激活函數

  1. TanH:Michelle_Wu_3-1698831659088.png:雙曲正切函數是一種S型函數, 介於-1和1之間,它是logistic函數中心化及尺度化版本,其中x是輸入變量的線性組合(圖3),其輸出中心化,當Y是分類變量或是非線性關係時,可以使用它當激活函數,也是常用的激活函數,其兩端極端值-1和1區域梯度接近0, 有可能會減慢學習速度。
    Michelle_Wu_4-1698831659092.pngMichelle_Wu_5-1698831659140.png

圖3: 線性組合

 

  1. Linear: 又稱恆等函數, 不會經過變數轉換過程(圖4)也就是說:變數呈現線性關係,通常使用場景在於降低輸入變量的維度
      圖4: Michelle_Wu_6-1698831659142.pngMichelle_Wu_7-1698831659190.png
  1. Gaussian: 高斯函數:Michelle_Wu_8-1698831659191.png, 它屬於徑向基底函數 (Radial Basis Function),它是非線性的函數,反應平面為高斯平面時適用(圖5),缺點是權重更新的速度慢,影響訓練的效率和效果,相比Tanh使用頻率較低。

圖5-1:

Michelle_Wu_9-1698831659194.png

 

圖5-2:

Michelle_Wu_10-1698831659244.png

 

接下來針對神經網路在JMP中如何設定進行說明: (圖6)

Michelle_Wu_11-1698831659273.png

圖6

 

一開始的Validation Method用來評估訓練集和驗證集的模型解釋能力,給定KFold跟Holdback兩種交叉驗證方法,因為KFold利用了所有的數據下去驗證同時提供多個估計有助於模型評估穩定性,對於小樣本也可以避免偏差的結果,執行時間較長,Holdback執行時間短,但是數據驗證會存在比較高的變異。

底下的Number of Tours代表重啟模型訓練過程的次數,避免模型落入局部最優值,而不是全區最優,而在隱藏層的設定,JMP標準版提供了單層的隱藏層設置,JMP Pro提供雙層隱藏層的設置,使用較多隱藏層通常是為了探索複雜的非線性關係,當資料結構較複雜或是資料有層次及順序性,如變數有不同的類型、資料來源眾多;而多個節點設置是為了學習更多模式,當輸入變數越多,所需要設置的節點就需要提升。

 

對於過擬合,JMP提供Penalty Method如下:

  1. Michelle_Wu_12-1698831659274.png(Squared): 假定大部分輸入變量都對模型有影響時可使用。
  2. Michelle_Wu_13-1698831659275.png(Absolute) orMichelle_Wu_14-1698831659278.png(Weight Decay): 有很多的輸入變量, 但預期只有一部分變量會影響到模型時可使用。

JMP也提供了在變數轉換的選項,如Transform Covariates,將輸入變數轉換成近似常態分佈,轉換的好處可以讓訓練更快的收斂,避免梯度消失的問題等,同樣對於輸出變量是偏斜分布、厚尾等情況,可以使用Robust Fit的選項,避免異常值的影響。

擬合模型的流程

綜合以上的敘述,簡單描述擬合模型的流程:

使用likelihood概似函數加上penalty懲罰函數,背後搭配quasi-Newton迭代法又稱BFGS法,找到讓損失函數加上penalty函數(如果有考慮)達到最小的點(圖7)去調整參數權重,一般來說使用交叉驗證大概20-50次可以找到最小點。

Michelle_Wu_15-1698831659364.png

圖7

 

JMP在擬合模型時,還有一個Boosting的方法可以選擇,有學習率Learning rates介在0和1之間以及定義擬合的模型個數可調整,他是由許多一系列小模型所加成起來成最終的模型, 每個小模型都是根據前一個模型誤差下去擬合,同時考慮擬合模型的個數以及交叉驗證後是否整體的模型解釋度無法再提升而停止,對於小模型而言,一般只會設定單層隱藏層以及一到兩個節點,其優點是提高模型的準確度。(圖8)

學習率與模型個數的設定大抵是學習率越接近1, 模型個數設定要越小,使用Boosting方法設定小模型越複雜就失去加成的意義,JMP也不允許設定兩層隱藏層搭配Boosting的方法。

Michelle_Wu_16-1698831659397.png

圖8

微影/蝕刻案例分享

底下引用2022 JMP Discovery Summit的例子3,微影/蝕刻階段有時出現側壁缺陷(圖9), 需要搭配掃描式電子顯微鏡SEM(Scanning Electron Microscope)去看線寬是否有在規格內, 通常很難抓到異常, 因為很難剛好量測到缺陷的位置。因此,使用開源軟體先將影像轉換為影像數據指標,再以JMP進行分析及建模,此時對應的Y為好或壞的類別型變量,X對應的是各個影像數據指標(圖10) (指標說明可參考最後的連結),

 

Michelle_Wu_17-1698831659738.png

圖9

Michelle_Wu_18-1698831659784.png

圖10

 

第一步將Y與X變量選入(圖11)

Michelle_Wu_19-1698831659819.png

圖11

 

第二步選取KFold,避免小樣本估計偏差,單層隱藏層以及TanH激活函數,將相關的輸入變量進行變數轉換(圖12)

Michelle_Wu_20-1698831659855.png

圖12

 

第三步確定誤分辨率、預測缺陷準確率以及Rsquare等指標(圖13)

螢幕擷取畫面 2023-11-01 174509.png

第四步根據預測刻畫器找出影響權重大的參數(圖14)

Michelle_Wu_22-1698831660044.png

(圖14)

第五步將預測公式儲存並查看權重 (圖15)

Michelle_Wu_23-1698831660069.pngMichelle_Wu_24-1698831660087.png

Michelle_Wu_25-1698831660169.png (圖15)

 

最後總結一些在神經網路上設定JMP的經驗法則,如下:

  1. 線性的激活函數通常與輸入變量搭配, 而輸出變量通常搭配非線性的激活函數,尤其是變量過多想縮減維度時。
  2. 當節點越多可能會過度擬合,保持隱藏層的節點數小於等於輸入變量的數目可以作為一個起始設置點。
  3. 小型的神經網路模型背後運算速率較佳且穩定性較好,如果預測精準度與大型模型差不多,以小型模型為主。
  4. 當輸入變量的隱藏層的節點數或隱藏層過多時,可能會引入不必要的複雜性,導致模型過擬合,可以搭配交叉驗證方法來確認並調整設置。
  5. 盡可能排除異常點,可以避免估計偏誤,讓預測可以更有效率。
  6. 數據的平衡性能讓預測精準度提升,如Y是類別型變量時,盡可能每個類別數量一致。

神經網路,作為一種常見的監督學習方法,我們在這篇文章中總結了神經網路的主要組成部分和訓練過程,包括感知器、激活函數和模型配置等。歡迎免費試用 JMP 30天,為您的企業開展不一樣的AI機器學習模型。

 

推薦閱讀:

 

參考資料

  1. Use Case: JMP in the Building of an Image Analysis Pipeline (2022-US-30MP-1096)
Last Modified: Nov 8, 2023 8:00 PM