cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

JMP Blog

A blog for anyone curious about data visualization, design of experiments, statistics, predictive modeling, and more
%3CLINGO-SUB%20id%3D%22lingo-sub-435832%22%20slang%3D%22zh-TW%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%3EDescifrado%20de%20datos%20de%20Double%20Eleven%3A%20%C2%BFQu%C3%A9%20factores%20est%C3%A1n%20relacionados%20con%20las%20ventas%20del%20comercio%20electr%C3%B3nico%3F%20El%20an%C3%A1lisis%20de%20datos%20te%20dice%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-435832%22%20slang%3D%22zh-TW%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%20mode%3D%22NONE%22%3E%3CP%3ECarnaval%20de%20compras%20anual%20de%20la%20Gala%20del%20Festival%20de%20Primavera%20de%20compradores%20%E2%80%9CDouble%20Eleven%E2%80%9D%2C%20%C2%BFcu%C3%A1ntos%20pedidos%20ha%20realizado%3F%3C%2FP%3E%0A%3CP%3EAunque%20el%20editor%20no%20compr%C3%B3%20demasiado%20este%20a%C3%B1o%2C%20%C2%A1a%C3%BAn%20puede%20considerarse%20como%20una%20contribuci%C3%B3n%20al%20%22Double%20Eleven%22!%3C%2FP%3E%0A%3CP%3EDouble%20Eleven%20es%20una%20temporada%20de%20promoci%C3%B3n%20anual%20para%20el%20comercio%20minorista%20de%20comercio%20electr%C3%B3nico.%20Todas%20las%20empresas%20y%20marcas%20de%20comercio%20electr%C3%B3nico%20se%20est%C3%A1n%20preparando%20y%20disparando%20a%20toda%20m%C3%A1quina.%20Si%20las%20marcas%20quieren%20tomar%20la%20iniciativa%20en%20la%20guerra%20del%20comercio%20electr%C3%B3nico%2C%20los%20conocimientos%20de%20los%20consumidores%20son%20esenciales.%20Cuanto%20m%C3%A1s%20comprenda%20la%20marca%20el%20comportamiento%20de%20compra%20de%20los%20consumidores%2C%20m%C3%A1s%20eficazmente%20podr%C3%A1%20ayudar%20a%20las%20empresas%20a%20llevar%20a%20cabo%20actividades%20de%20marketing%20m%C3%A1s%20espec%C3%ADficas.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EEste%20art%C3%ADculo%20utiliza%20el%20an%C3%A1lisis%20de%20datos%20para%20analizar%20varios%20factores%20clave%20del%20comercio%20electr%C3%B3nico%2C%20explicar%20qu%C3%A9%20factores%20pueden%20afectar%20las%20ventas%20y%20ayudar%20al%20comercio%20minorista%20a%20encontrar%20informaci%C3%B3n%20para%20aumentar%20las%20ventas.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EHoy%20utilizaremos%20la%20literatura%20de%20Sakar%2C%20CO%2C%20Polat%2C%20S.O.%2C%20Katircioglu%2C%20M.%20et%20al.%20Se%20utiliza%20una%20muestra%20de%20datos%20p%C3%BAblicos%20de%20Neural%20Comput%20%26amp%3B%20Applic%20(2018)%2C%20combinados%20con%20el%20software%20JMP%2C%20para%20realizar%20un%20interesante%20an%C3%A1lisis%20de%20datos%20exploratorios%20sobre%20el%20comportamiento%20de%20compra%20de%20los%20usuarios%20de%20compras%20en%20l%C3%ADnea.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CH2%20id%3D%22toc-hId-1704766753%22%20id%3D%22toc-hId-1704767682%22%20id%3D%22toc-hId-1704767682%22%20id%3D%22toc-hId-1704767682%22%20id%3D%22toc-hId-1704767682%22%3E%3CFONT%20size%3D%224%22%3E%3CSTRONG%3EPaso%201%3C%2FSTRONG%3E%3CSTRONG%3E%20Adquisici%C3%B3n%20de%20datos%3C%2FSTRONG%3E%3C%2FFONT%3E%3C%2FH2%3E%0A%3CH3%20id%3D%22toc-hId--1043903713%22%20id%3D%22toc-hId--1043902784%22%20id%3D%22toc-hId--1043902784%22%20id%3D%22toc-hId--1043902784%22%20id%3D%22toc-hId--1043902784%22%3E%3CFONT%20size%3D%224%22%3E%3CSTRONG%3Efuente%20original%3C%2FSTRONG%3E%3C%2FFONT%3E%3C%2FH3%3E%0A%3CP%3ELos%20datos%20originales%20se%20pueden%20obtener%20a%20trav%C3%A9s%20de%3CA%20href%3D%22https%3A%2F%2Farchive.ics.uci.edu%2Fml%2Fmachine-learning-databases%2F00468%2F%22%20target%3D%22_blank%22%20rel%3D%22noopener%20nofollow%20noreferrer%22%3E%20URL%3C%2FA%3E%20Descargue%20los%20datos%20originales%20en%20formato%20csv%20y%20%C3%A1bralos%20a%20trav%C3%A9s%20de%20JMP%3B%20tambi%C3%A9n%20puede%20usar%20directamente%20la%20funci%C3%B3n%20de%20lectura%20de%20p%C3%A1ginas%20web%20de%20JMP%20para%20obtener%20directamente%20los%20datos%20de%20la%20p%C3%A1gina%20web.%3C%2FP%3E%0A%3CP%3E%3CFONT%20color%3D%22%230000FF%22%3E%3CSTRONG%3E(Operaci%C3%B3n%20JMP%3A%20Archivo%20-%26gt%3B%20Abrir%20desde%20Internet%20-%26gt%3B%20P%C3%A1gina%20web)%3C%2FSTRONG%3E%3C%2FFONT%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_0-1636705308617.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_0-1636705308617.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_0-1636705308617.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_0-1636705308617.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_0-1636705308617.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F37507iC5EB04B453CCF6DC%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_0-1636705308617.png%22%20alt%3D%22Michelle_Wu_0-1636705308617.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CH3%20id%3D%22toc-hId-698906622%22%20id%3D%22toc-hId-698907551%22%20id%3D%22toc-hId-698907551%22%20id%3D%22toc-hId-698907551%22%20id%3D%22toc-hId-698907551%22%3E%3CFONT%20size%3D%224%22%3E%3CSTRONG%3EIntroducci%C3%B3n%20a%20los%20antecedentes%20de%20la%20informaci%C3%B3n.%3C%2FSTRONG%3E%3C%2FFONT%3E%3C%2FH3%3E%0A%3CP%3EEste%20conjunto%20de%20datos%20contiene%20el%20comportamiento%20de%20compra%20de%2012.330%20usuarios%20de%20compras%20en%20l%C3%ADnea%20en%20el%20sitio%20web%20en%20un%20a%C3%B1o%2C%20as%C3%AD%20como%20los%2017%20registros%20de%20comportamiento%20de%20usuario%20correspondientes%20y%20los%20resultados%20finales%20de%20las%20transacciones.%20Hay%2017%20registros%20de%20comportamiento%2C%20incluidas%2010%20caracter%C3%ADsticas%20num%C3%A9ricas%20y%207%20caracter%C3%ADsticas%20categ%C3%B3ricas.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_1-1636705308642.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_1-1636705308642.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_1-1636705308642.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_1-1636705308642.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_1-1636705308642.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F37509i76CAEABA35552B80%2Fimage-size%2Flarge%3Fv%3Dv2%26amp%3Bpx%3D999%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_1-1636705308642.png%22%20alt%3D%22Michelle_Wu_1-1636705308642.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3COL%3E%0A%3CLI%3E%3CSTRONG%3EInformaci%C3%B3n%20b%C3%A1sica%3C%2FSTRONG%3E%3C%2FLI%3E%0A%3C%2FOL%3E%0A%3CP%3ELas%20p%C3%A1ginas%20web%20de%20administraci%C3%B3n%2C%20el%20tiempo%20de%20permanencia%20de%20administraci%C3%B3n%2C%20las%20p%C3%A1ginas%20web%20de%20informaci%C3%B3n%2C%20el%20tiempo%20de%20permanencia%20de%20la%20informaci%C3%B3n%2C%20las%20p%C3%A1ginas%20web%20de%20productos%2C%20el%20tiempo%20de%20permanencia%20del%20producto%2C%20representan%20el%20n%C3%BAmero%20total%20de%20usuarios%20que%20abren%20y%20el%20tiempo%20de%20permanencia%20en%20diferentes%20tipos%20de%20p%C3%A1ginas%20web.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3COL%20start%3D%222%22%3E%0A%3CLI%3E%3CSTRONG%3EPorcentaje%20de%20rebote%3C%2FSTRONG%3E%3C%2FLI%3E%0A%3C%2FOL%3E%0A%3CP%3ELa%20tasa%20de%20rebote%20indica%20qu%C3%A9%20porcentaje%20de%20usuarios%20que%20ingresan%20a%20la%20p%C3%A1gina%20de%20un%20sitio%20web%20desde%20una%20ruta%20espec%C3%ADfica%20sin%20hacer%20nada%20y%20simplemente%20abandonan%20el%20sitio%20web%2C%20puede%20usarse%20como%20una%20medida%20de%20todo%20el%20sitio%20web%20o%20como%20una%20medida%20de%20la%20p%C3%A1gina.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3COL%20start%3D%223%22%3E%0A%3CLI%3E%3CSTRONG%3Etasa%20de%20salida%3C%2FSTRONG%3E%3C%2FLI%3E%0A%3C%2FOL%3E%0A%3CP%3ELa%20tasa%20de%20salida%20indica%20que%20para%20una%20p%C3%A1gina%20espec%C3%ADfica%2C%20el%20porcentaje%20de%20personas%20que%20abandonan%20el%20sitio%20web%20desde%20esta%20p%C3%A1gina%20representa%20todas%20las%20visitas%20a%20esta%20p%C3%A1gina.%20Generalmente%20se%20utiliza%20como%20medida%20de%20la%20p%C3%A1gina%3B%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3COL%20start%3D%224%22%3E%0A%3CLI%3E%3CSTRONG%3Evalor%20de%20p%C3%A1gina%3C%2FSTRONG%3E%3C%2FLI%3E%0A%3C%2FOL%3E%0A%3CP%3EEl%20valor%20de%20la%20p%C3%A1gina%20representa%20el%20n%C3%BAmero%20promedio%20de%20p%C3%A1ginas%20que%20visit%C3%B3%20un%20usuario%20antes%20de%20completar%20una%20transacci%C3%B3n%3B%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3COL%20start%3D%225%22%3E%0A%3CLI%3E%3CSTRONG%3Ed%C3%ADa%20especial%3C%2FSTRONG%3E%3C%2FLI%3E%0A%3C%2FOL%3E%0A%3CP%3ELos%20d%C3%ADas%20especiales%20representan%20el%20intervalo%20entre%20el%20tiempo%20de%20acceso%20al%20sitio%20web%20y%20d%C3%ADas%20especiales%20espec%C3%ADficos%3B%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3COL%20start%3D%226%22%3E%0A%3CLI%3E%3CSTRONG%3Eotro%3C%2FSTRONG%3E%3C%2FLI%3E%0A%3C%2FOL%3E%0A%3CP%3EAdem%C3%A1s%2C%20tambi%C3%A9n%20incluye%20el%20sistema%20operativo%2C%20navegador%2C%20regi%C3%B3n%2C%20tipo%20de%20tr%C3%A1fico%2C%20tipo%20de%20visitante%20utilizado%20por%20el%20usuario%2C%20si%20es%20fin%20de%20semana%20y%20el%20mes%20del%20a%C3%B1o.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CH2%20id%3D%22toc-hId--1656736834%22%20id%3D%22toc-hId--1656735905%22%20id%3D%22toc-hId--1656735905%22%20id%3D%22toc-hId--1656735905%22%20id%3D%22toc-hId--1656735905%22%3E%3CFONT%20size%3D%224%22%3E%3CSTRONG%3EPaso%202%3C%2FSTRONG%3E%3CSTRONG%3E%20An%C3%A1lisis%20exploratorio%20visual.%3C%2FSTRONG%3E%3C%2FFONT%3E%3C%2FH2%3E%0A%3CH3%20id%3D%22toc-hId--110440004%22%20id%3D%22toc-hId--110439075%22%20id%3D%22toc-hId--110439075%22%20id%3D%22toc-hId--110439075%22%20id%3D%22toc-hId--110439075%22%3E%3CFONT%20size%3D%224%22%3E%3CSTRONG%3EEl%20nivel%20de%20tasa%20de%20rebote%20est%C3%A1%20relacionado%20con%20el%20%C3%A9xito%20del%20marketing%20online.%3C%2FSTRONG%3E%3C%2FFONT%3E%3C%2FH3%3E%0A%3CP%3ELos%20clientes%20solo%20ven%20una%20p%C3%A1gina%20y%20luego%20salen%2C%20lo%20que%20dificulta%20que%20las%20marcas%20convenzan%20a%20los%20consumidores%20para%20que%20compren%20productos%2C%20ya%20que%20solo%20vieron%20una%20p%C3%A1gina.%20Echemos%20un%20vistazo%20a%20c%C3%B3mo%20se%20ve%20la%20tasa%20de%20rebote%20a%20continuaci%C3%B3n.%3C%2FP%3E%0A%3CP%3E%3CFONT%20color%3D%22%230000FF%22%3E%3CSTRONG%3E(Operaci%C3%B3n%20JMP%3A%20An%C3%A1lisis%20-%26gt%3B%20Distribuci%C3%B3n)%3C%2FSTRONG%3E%3C%2FFONT%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_2-1636705308657.png%22%20style%3D%22width%3A%20509px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_2-1636705308657.png%22%20style%3D%22width%3A%20509px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_2-1636705308657.png%22%20style%3D%22width%3A%20509px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_2-1636705308657.png%22%20style%3D%22width%3A%20509px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_2-1636705308657.png%22%20style%3D%22width%3A%20509px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F37508iCA873BA487ACAD7A%2Fimage-dimensions%2F509x178%3Fv%3Dv2%22%20width%3D%22509%22%20height%3D%22178%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_2-1636705308657.png%22%20alt%3D%22Michelle_Wu_2-1636705308657.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EComo%20se%20puede%20ver%20en%20la%20imagen%2C%20el%2090%25%20de%20los%20clientes%20tiene%20una%20tasa%20de%20rebote%20inferior%20al%206%25%20y%20la%20tasa%20de%20rebote%20promedio%20de%20todos%20los%20usuarios%20es%20solo%20del%202%25%2C%20%C2%BFno%20es%20perfecto%3F%20Por%20favor%2C%20no%20est%C3%A9s%20demasiado%20ansioso%20por%20ser%20feliz%20todav%C3%ADa.%20Podr%C3%ADa%20ser%20inexacto%20o%20podr%C3%ADa%20haber%20un%20problema%20t%C3%A9cnico%20con%20la%20forma%20en%20que%20el%20c%C3%B3digo%20de%20seguimiento%20anal%C3%ADtico%20del%20sitio%20web%20se%20integra%20en%20el%20sitio%20web.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EPorque%20seg%C3%BAn%20la%20experiencia%20pasada%2C%20la%20tasa%20de%20rebote%20%22normal%22%20est%C3%A1%20entre%20el%2040%25%20y%20el%2060%25.%20Por%20debajo%20del%2040%25%20es%20muy%20raro%20y%20por%20encima%20del%2070%25%20es%20preocupante%20y%20requiere%20una%20acci%C3%B3n%20urgente.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3ELas%20tasas%20de%20rebote%20que%20actualmente%20est%C3%A1n%20fuera%20del%20rango%20esperado%20y%20parecen%20%22demasiado%20buenas%20para%20ser%20verdad%22%20probablemente%20se%20deban%20a%20un%20c%C3%B3digo%20de%20an%C3%A1lisis%20duplicado%20en%20alguna%20parte%20del%20sitio.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CH3%20id%3D%22toc-hId-1632370331%22%20id%3D%22toc-hId-1632371260%22%20id%3D%22toc-hId-1632371260%22%20id%3D%22toc-hId-1632371260%22%20id%3D%22toc-hId-1632371260%22%3E%3CFONT%20size%3D%224%22%3E%3CSTRONG%3EExploraci%C3%B3n%20m%C3%BAltiple%20de%20las%20caracter%C3%ADsticas%20num%C3%A9ricas%20del%20usuario.%3C%2FSTRONG%3E%3C%2FFONT%3E%3C%2FH3%3E%0A%3CP%3EAl%20realizar%20un%20an%C3%A1lisis%20del%20comportamiento%20de%20compra%2C%20las%20caracter%C3%ADsticas%20num%C3%A9ricas%20del%20usuario%20pueden%20tener%20muchas%20dimensiones.%20Con%20la%20ayuda%20del%20m%C3%A9todo%20de%20an%C3%A1lisis%20multivariado%20de%20JMP%2C%20se%20puede%20descubrir%20r%C3%A1pidamente%20la%20relaci%C3%B3n%20entre%20cada%20dimensi%C3%B3n%20y%20es%20posible%20implementar%20operaciones%20de%20reducci%C3%B3n%20de%20dimensionalidad%2C%20lo%20que%20reducir%C3%A1%20el%20tiempo%20y%20Esfuerzo%20para%20el%20seguimiento%20posterior%20de%20funciones.%20Necesario%20desperdicio%20de%20recursos.%3C%2FP%3E%0A%3CP%3E%3CFONT%20color%3D%22%230000FF%22%3E%3CSTRONG%3E(Operaci%C3%B3n%20JMP%3A%20An%C3%A1lisis%20-%26gt%3B%20M%C3%A9todos%20multivariados%20-%26gt%3B%20Multivariado)%3C%2FSTRONG%3E%3C%2FFONT%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_3-1636705308683.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_3-1636705308683.png%22%20style%3D%22width%3A%20753px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_3-1636705308683.png%22%20style%3D%22width%3A%20753px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_3-1636705308683.png%22%20style%3D%22width%3A%20753px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_3-1636705308683.png%22%20style%3D%22width%3A%20753px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F37512i99E56D569E28F7F5%2Fimage-size%2Flarge%3Fv%3Dv2%26amp%3Bpx%3D999%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_3-1636705308683.png%22%20alt%3D%22Michelle_Wu_3-1636705308683.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3ESeg%C3%BAn%20los%20datos%20actuales%2C%20existe%20una%20correlaci%C3%B3n%20positiva%20entre%20el%20n%C3%BAmero%20de%20veces%20que%20un%20usuario%20abre%20diferentes%20tipos%20de%20p%C3%A1ginas%20web%20y%20el%20tiempo%20que%20permanece%20en%20ellas%2C%20lo%20cual%20es%20f%C3%A1cil%20de%20entender.%20La%20tasa%20de%20rebote%20y%20la%20tasa%20de%20salida%20tambi%C3%A9n%20tienen%20una%20correlaci%C3%B3n%20positiva%20significativa%20debido%20a%20f%C3%B3rmulas%20de%20c%C3%A1lculo%20similares.%20Adem%C3%A1s%2C%20no%20se%20encontr%C3%B3%20ninguna%20correlaci%C3%B3n%20caracter%C3%ADstica%20num%C3%A9rica%20obvia.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CH3%20id%3D%22toc-hId--919786630%22%20id%3D%22toc-hId--919785701%22%20id%3D%22toc-hId--919785701%22%20id%3D%22toc-hId--919785701%22%20id%3D%22toc-hId--919785701%22%3E%3CFONT%20size%3D%224%22%3E%3CSTRONG%3EEl%20impacto%20de%20la%20forma%20en%20que%20los%20usuarios%20acceden%20a%20Internet%20en%20las%20ventas%3C%2FSTRONG%3E%3C%2FFONT%3E%3C%2FH3%3E%0A%3CP%3EA%20trav%C3%A9s%20de%20los%20resultados%20estad%C3%ADsticos%20de%20la%20prueba%20de%20chi-cuadrado%20en%20la%20siguiente%20figura%2C%20podemos%20capturar%20la%20relaci%C3%B3n%20entre%20si%20se%20completa%20una%20transacci%C3%B3n%20y%20el%20sistema%20operativo%2C%20el%20tipo%20de%20navegador%20y%20el%20tipo%20de%20tr%C3%A1fico%20del%20cliente.%3C%2FP%3E%0A%3CP%3E%3CFONT%20color%3D%22%230000FF%22%3E%3CSTRONG%3E(%3C%2FSTRONG%3E%3CSTRONG%3E%20JMP%3C%2FSTRONG%3E%3CSTRONG%3E%20Operaci%C3%B3n%3A%20An%C3%A1lisis%20-%26gt%3B%3C%2FSTRONG%3E%3CSTRONG%3E%20Toma%20X%3C%2FSTRONG%3E%3CSTRONG%3E%20En%20forma%3C%2FSTRONG%3E%3CSTRONG%3E%20)%3C%2FSTRONG%3E%3C%2FFONT%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_4-1636705308695.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_4-1636705308695.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_4-1636705308695.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_4-1636705308695.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_4-1636705308695.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F37510iACC4E8B7852978B5%2Fimage-size%2Flarge%3Fv%3Dv2%26amp%3Bpx%3D999%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_4-1636705308695.png%22%20alt%3D%22Michelle_Wu_4-1636705308695.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EEn%20lo%20que%20respecta%20a%20los%20sistemas%20operativos%2C%20la%20proporci%C3%B3n%20de%20usuarios%20que%20completan%20transacciones%20es%20diferente%20para%20los%20diferentes%20sistemas%20operativos.%3C%2FP%3E%0A%3CP%3ETambi%C3%A9n%20se%20puede%20ver%20en%20el%20gr%C3%A1fico%20que%20cuando%20el%20sistema%20operativo%20es%20%222%22%2C%20est%C3%A1%20ligeramente%20m%C3%A1s%20arriba%2C%20mientras%20que%20%221%22%20y%20%223%22%20est%C3%A1n%20en%20la%20parte%20inferior%2C%20lo%20que%20puede%20significar%20que%20la%20p%C3%A1gina%20del%20sitio%20web%20no%20es%20lo%20suficientemente%20amigable%20para%20soportar%20estos%20sistemas%20operativos.%20Si%20desea%20mejorar%20la%20conversi%C3%B3n%20de%20ingresos%20de%20esta%20parte%2C%20es%20necesario%20realizar%20las%20mejoras%20correspondientes.%20De%20manera%20similar%2C%20para%20el%20tipo%20de%20navegador%20y%20el%20tipo%20de%20tr%C3%A1fico%2C%20tambi%C3%A9n%20hemos%20visto%20su%20impacto%20estad%C3%ADstico%20en%20la%20proporci%C3%B3n%20de%20usuarios%20que%20completan%20transacciones%2C%20lo%20que%20indica%20que%20el%20sitio%20web%20tambi%C3%A9n%20tiene%20margen%20de%20mejora%20en%20este%20sentido.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CH3%20id%3D%22toc-hId-823023705%22%20id%3D%22toc-hId-823024634%22%20id%3D%22toc-hId-823024634%22%20id%3D%22toc-hId-823024634%22%20id%3D%22toc-hId-823024634%22%3E%3CFONT%20size%3D%224%22%3E%3CSTRONG%3EClientes%20nuevos%20y%20antiguos%20y%20d%C3%ADas%20laborables.%3C%2FSTRONG%3E%3CSTRONG%3E%20%2F%3C%2FSTRONG%3E%3CSTRONG%3E%20Impacto%20de%20los%20fines%20de%20semana%20en%20las%20ventas%3C%2FSTRONG%3E%3C%2FFONT%3E%3C%2FH3%3E%0A%3CP%3ECon%20la%20ayuda%20del%20m%C3%A9todo%20de%20prueba%20de%20chi-cuadrado%20en%20la%20Parte%202.3%2C%20tambi%C3%A9n%20podemos%20descubrir%20r%C3%A1pidamente%20los%20patrones%20de%20ventas%20de%20algunos%20clientes%20nuevos%20y%20antiguos%20y%20entre%20semana%2Ffines%20de%20semana%2C%20pero%20aqu%C3%AD%20probamos%20otro%20m%C3%A9todo%20de%20resumen%20de%20tablas%20de%20datos.%3C%2FP%3E%0A%3CP%3E%3CSTRONG%3E%3CFONT%20color%3D%22%230000FF%22%3E(Operaci%C3%B3n%20JMP%3A%20An%C3%A1lisis-%26gt%3BInvestigaci%C3%B3n%20del%20Consumidor-%26gt%3BClasificaci%C3%B3n)%3C%2FFONT%3E%3C%2FSTRONG%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_5-1636705308706.png%22%20style%3D%22width%3A%20516px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_5-1636705308706.png%22%20style%3D%22width%3A%20516px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_5-1636705308706.png%22%20style%3D%22width%3A%20516px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_5-1636705308706.png%22%20style%3D%22width%3A%20516px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_5-1636705308706.png%22%20style%3D%22width%3A%20516px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F37511iBB76E9037C34D328%2Fimage-dimensions%2F516x520%3Fv%3Dv2%22%20width%3D%22516%22%20height%3D%22520%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_5-1636705308706.png%22%20alt%3D%22Michelle_Wu_5-1636705308706.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3ECombinando%20los%20gr%C3%A1ficos%20y%20la%20informaci%C3%B3n%20anteriores%2C%20podemos%20ver%20claramente%3A%3CSTRONG%3E%20Los%20clientes%20antiguos%20son%20la%20principal%20fuente%20de%20visitas%20al%20sitio%20web%3C%2FSTRONG%3E%20%2C%20lo%20que%20indica%20que%20el%20sitio%20web%20ha%20hecho%20un%20buen%20trabajo%20en%20la%20retenci%C3%B3n%20de%20clientes%3B%20pero%20tambi%C3%A9n%20vemos%20que%20la%20proporci%C3%B3n%20de%20nuevos%20clientes%20que%20completan%20transacciones%20es%20mayor%20ya%20sea%20entre%20semana%20(13%2C2%25%20frente%20a%2026%2C1%25)%20o%20los%20fines%20de%20semana%20(16%2C5%25%20frente%20a%2021%2C9%25).%20clientes%2C%20esto%20muestra%20que%20el%20sitio%20web%20puede%20realizar%20algunas%20mejoras%20en%20la%20tasa%20de%20conversi%C3%B3n%20de%20los%20clientes%20antiguos.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EPor%20ejemplo%2C%20cuando%20los%20clientes%20antiguos%20compran%20productos%2C%20pueden%20disfrutar%20de%20mayores%20descuentos%20al%20presentar%20nuevos%20clientes%2C%20lo%20que%20no%20s%C3%B3lo%20despierta%20el%20entusiasmo%20de%20los%20antiguos%20clientes%20por%20comprar%2C%20sino%20que%20tambi%C3%A9n%20a%C3%B1ade%20m%C3%A1s%20clientes%20nuevos%20al%20sitio%20web.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CH3%20id%3D%22toc-hId--1729133256%22%20id%3D%22toc-hId--1729132327%22%20id%3D%22toc-hId--1729132327%22%20id%3D%22toc-hId--1729132327%22%20id%3D%22toc-hId--1729132327%22%3E%3CFONT%20size%3D%224%22%3E%3CSTRONG%3EVisualizaci%C3%B3n%20centralizada%20de%20diversos%20resultados%20de%20an%C3%A1lisis.%3C%2FSTRONG%3E%3C%2FFONT%3E%3C%2FH3%3E%0A%3CP%3ESi%20desea%20mostrar%20varios%20gr%C3%A1ficos%20de%20an%C3%A1lisis%20en%20forma%20de%20informe%2C%20puede%20utilizar%20la%20funci%C3%B3n%20de%20secuencia%20de%20comandos%20de%20JMP%20para%20actualizar%20los%20datos%20del%20enlace%20del%20informe%20en%20tiempo%20real%20con%20un%20solo%20clic%2C%20ahorrando%20as%C3%AD%20muchas%20operaciones%20manuales%20repetitivas.%3C%2FP%3E%0A%3CP%3E%3CFONT%20color%3D%22%230000FF%22%3E%3CSTRONG%3E(Operaci%C3%B3n%20JMP%3A%20Archivo-%26gt%3BNuevo-%26gt%3BAplicaci%C3%B3n)%3C%2FSTRONG%3E%3C%2FFONT%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_6-1636705308726.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_6-1636705308726.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_6-1636705308726.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_6-1636705308726.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_6-1636705308726.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F37513i1E8A8CD3809426AF%2Fimage-size%2Flarge%3Fv%3Dv2%26amp%3Bpx%3D999%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_6-1636705308726.png%22%20alt%3D%22Michelle_Wu_6-1636705308726.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3ELo%20anterior%20son%20los%20resultados%20de%20algunos%20an%C3%A1lisis%20de%20datos%20exploratorios.%20A%20continuaci%C3%B3n%2C%20intentaremos%20utilizar%20m%C3%A9todos%20de%20recopilaci%C3%B3n%20de%20datos%20para%20establecer%20un%20modelo%20estad%C3%ADstico%20cuantitativo%20para%20las%20principales%20caracter%C3%ADsticas%20del%20usuario%20y%20los%20resultados%20de%20las%20transacciones%20mencionados%20anteriormente.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CH2%20id%3D%22toc-hId-210190584%22%20id%3D%22toc-hId-210191513%22%20id%3D%22toc-hId-210191513%22%20id%3D%22toc-hId-210191513%22%20id%3D%22toc-hId-210191513%22%3E%3CFONT%20size%3D%224%22%3E%3CSTRONG%3EPaso%203%3C%2FSTRONG%3E%3CSTRONG%3E%20Modelado%20predictivo%20de%20datos%3C%2FSTRONG%3E%3C%2FFONT%3E%3C%2FH2%3E%0A%3CH3%20id%3D%22toc-hId-1041326125%22%20id%3D%22toc-hId-1041327054%22%20id%3D%22toc-hId-1041327054%22%20id%3D%22toc-hId-1041327054%22%20id%3D%22toc-hId-1041327054%22%3E%3CFONT%20size%3D%224%22%3E%3CSTRONG%3EEval%C3%BAe%20las%20caracter%C3%ADsticas%20clave%20que%20afectan%20las%20ventas%20a%20trav%C3%A9s%20de%20%C3%A1rboles%20de%20decisi%C3%B3n.%3C%2FSTRONG%3E%3C%2FFONT%3E%3C%2FH3%3E%0A%3CP%3EEl%20%C3%A1rbol%20de%20decisi%C3%B3n%20es%20un%20m%C3%A9todo%20de%20aprendizaje%20supervisado%20que%20puede%20resumir%20reglas%20de%20decisi%C3%B3n%20a%20partir%20de%20una%20serie%20de%20datos%20con%20caracter%C3%ADsticas%20y%20etiquetas%2C%20y%20presentar%20estas%20reglas%20en%20una%20estructura%20de%20diagrama%20de%20%C3%A1rbol.%20Los%20resultados%20son%20f%C3%A1ciles%20de%20interpretar%20y%20tienen%20amplia%20aplicaci%C3%B3n%20en%20diversas%20industrias%20y%20campos.%20Aplicaci%C3%B3n.%3C%2FP%3E%0A%3CP%3E%3CFONT%20color%3D%22%230000FF%22%3E%3CSTRONG%3E(Operaci%C3%B3n%20JMP%3A%20An%C3%A1lisis%20-%26gt%3B%20Modelado%20predictivo%20-%26gt%3B%20Segmentaci%C3%B3n)%3C%2FSTRONG%3E%3C%2FFONT%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_7-1636705308746.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_7-1636705308746.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_7-1636705308746.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_7-1636705308746.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_7-1636705308746.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F37514iAE7BE6C67874ED42%2Fimage-size%2Flarge%3Fv%3Dv2%26amp%3Bpx%3D999%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_7-1636705308746.png%22%20alt%3D%22Michelle_Wu_7-1636705308746.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3EEn%20el%20diagrama%20podemos%20observar%20las%20distintas%20etapas%20del%20%C3%A1rbol%20de%20decisi%C3%B3n%2C%20mostrando%20de%20arriba%20a%20abajo%20las%20caracter%C3%ADsticas%20m%C3%A1s%20importantes%20que%20influyen%20en%20el%20resultado%20comercial.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EEl%20m%C3%A1s%20importante%20es%20el%20valor%20de%20la%20p%C3%A1gina%20web%3A%20los%20ratios%20de%20transacciones%20de%20p%C3%A1ginas%20web%20con%20valores%20inferiores%20a%200%2C067%20y%20superiores%20a%200%2C067%20son%20del%203%2C85%25%20y%2056%2C4%25%20respectivamente%2C%20con%20lagunas%20evidentes.%20Tambi%C3%A9n%20hay%20algunos%20par%C3%A1metros%20caracter%C3%ADsticos%20m%C3%A1s%20importantes%20que%20se%20enumeran%20m%C3%A1s%20adelante%2C%20como%20la%20tasa%20de%20rebote%2C%20el%20mes%20y%20las%20p%C3%A1ginas%20relacionadas%20con%20el%20producto%2C%20etc.%20Esta%20informaci%C3%B3n%20es%20factores%20importantes%20que%20impulsan%20los%20resultados%20de%20las%20transacciones%20y%20ahora%20se%20pueden%20seleccionar%20y%20mostrar%20r%C3%A1pidamente%2C%20lo%20que%20permite%20a%20las%20marcas%20tener%20una%20visi%C3%B3n%20m%C3%A1s%20clara.%20enfoque%20para%20la%20mejora%20y%20optimizaci%C3%B3n.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CH3%20id%3D%22toc-hId--1510830836%22%20id%3D%22toc-hId--1510829907%22%20id%3D%22toc-hId--1510829907%22%20id%3D%22toc-hId--1510829907%22%20id%3D%22toc-hId--1510829907%22%3E%3CFONT%20size%3D%224%22%3E%3CSTRONG%3ESeleccionar%20lo%20mejor%20de%20lo%20mejor%2C%20probar%20m%C3%A1s%20m%C3%A9todos%20de%20recopilaci%C3%B3n%20de%20datos%3C%2FSTRONG%3E%3C%2FFONT%3E%3C%2FH3%3E%0A%3CP%3EAdem%C3%A1s%20de%20los%20%C3%A1rboles%20de%20decisi%C3%B3n%2C%20JMP%20tambi%C3%A9n%20proporciona%20una%20variedad%20de%20m%C3%A9todos%20de%20recopilaci%C3%B3n%20de%20datos%2C%20como%20redes%20neuronales%2C%20bosques%20aleatorios%2C%20%C3%A1rboles%20potenciados%20y%20m%C3%A1quinas%20de%20vectores%20de%20soporte%2C%20y%20puede%20completar%20f%C3%A1cilmente%20comparaciones%20entre%20algoritmos%20modelo%20para%20lograr%20lo%20mejor%20de%20lo%20mejor.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_8-1636705308828.png%22%20style%3D%22width%3A%20517px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_8-1636705308828.png%22%20style%3D%22width%3A%20517px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_8-1636705308828.png%22%20style%3D%22width%3A%20517px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_8-1636705308828.png%22%20style%3D%22width%3A%20517px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_8-1636705308828.png%22%20style%3D%22width%3A%20517px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F37515i85EE720B247A52D1%2Fimage-dimensions%2F517x411%3Fv%3Dv2%22%20width%3D%22517%22%20height%3D%22411%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_8-1636705308828.png%22%20alt%3D%22Michelle_Wu_8-1636705308828.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EA%20trav%C3%A9s%20del%20nuevo%20an%C3%A1lisis%20de%20modelos%20de%20JMP%20Pro%2016%2C%20se%20pueden%20comparar%20m%C3%BAltiples%20m%C3%A9todos%20de%20recopilaci%C3%B3n%20de%20datos%20al%20mismo%20tiempo.%20Antes%20de%20eso%2C%20para%20evitar%20que%20el%20modelo%20construido%20se%20sobreajuste%2C%20primero%20puede%20seguir%20el%20conjunto%20de%20entrenamiento%2C%20el%20conjunto%20de%20prueba%20y%20el%20conjunto%20de%20verificaci%C3%B3n%20en%20la%20proporci%C3%B3n%20de%206%3A2%3A2%20Divida%20proporcionalmente%20los%20datos%20originales%20y%20genere%20columnas%20de%20verificaci%C3%B3n.%3C%2FP%3E%0A%3CP%3E%3CFONT%20color%3D%22%230000FF%22%3E%3CSTRONG%3E(Operaci%C3%B3n%20JMP%3A%20An%C3%A1lisis-%26gt%3BModelado%20predictivo-%26gt%3BGenerar%20columna%20de%20validaci%C3%B3n)%3C%2FSTRONG%3E%3C%2FFONT%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_9-1636705308840.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_9-1636705308840.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_9-1636705308840.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_9-1636705308840.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_9-1636705308840.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F37516i0DC802E27BD4D86A%2Fimage-size%2Flarge%3Fv%3Dv2%26amp%3Bpx%3D999%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_9-1636705308840.png%22%20alt%3D%22Michelle_Wu_9-1636705308840.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EComo%20se%20muestra%20en%20la%20siguiente%20figura%2C%20una%20vez%20que%20ingresa%20los%20par%C3%A1metros%20caracter%C3%ADsticos%20y%20los%20resultados%20de%20la%20transacci%C3%B3n%2C%20la%20plataforma%20construir%C3%A1%20m%C3%BAltiples%20modelos%20de%20algoritmos%20al%20mismo%20tiempo%20y%20seleccionar%C3%A1%20autom%C3%A1ticamente%20el%20mejor%20m%C3%A9todo%20de%20modelado%20actual%20como%20bosque%20aleatorio.%20Como%20indicador%20del%20futuro%2C%20la%20capacidad%20de%20predicci%C3%B3n%20R-cuadrado%20de%20los%20nuevos%20datos%20alcanz%C3%B3%200%2C6%20y%20la%20precisi%C3%B3n%20de%20la%20predicci%C3%B3n%20alcanz%C3%B3%20el%2090%2C7%25.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3ELos%20modelos%20de%20predicci%C3%B3n%20precisos%20pueden%20ayudar%20a%20las%20marcas%20a%20comprender%20los%20posibles%20resultados%20de%20las%20transacciones%20de%20cada%20usuario%20lo%20antes%20posible%2C%20especialmente%20predecir%20fallas%20en%20las%20transacciones%20y%20ofrecer%20respuestas%20y%20remedios%20tempranos%2C%20como%20descuentos%20o%20abrir%20una%20interfaz%20de%20retenci%C3%B3n%20antes%20de%20que%20los%20clientes%20abandonen%20la%20p%C3%A1gina.%3C%2FP%3E%0A%3CP%3E%3CFONT%20color%3D%22%230000FF%22%3E%3CSTRONG%3E(Operaci%C3%B3n%20JMP%3A%20An%C3%A1lisis-%26gt%3BModelado%20predictivo-%26gt%3BDetecci%C3%B3n%20de%20modelo)%3C%2FSTRONG%3E%3C%2FFONT%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Michelle_Wu_10-1636705308857.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_10-1636705308857.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_10-1636705308857.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_10-1636705308857.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Michelle_Wu_10-1636705308857.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F37517i15ED1F1E3D2E375F%2Fimage-size%2Flarge%3Fv%3Dv2%26amp%3Bpx%3D999%22%20role%3D%22button%22%20title%3D%22Michelle_Wu_10-1636705308857.png%22%20alt%3D%22Michelle_Wu_10-1636705308857.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%C2%BFQu%C3%A9%20tal%3F%20Despu%C3%A9s%20de%20leer%20el%20an%C3%A1lisis%20de%20hoy%2C%20%C2%BFle%20da%20m%C3%A1s%20confianza%20en%20la%20%E2%80%9Cguerra%20del%20comercio%20electr%C3%B3nico%E2%80%9D%3F%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EPara%20las%20marcas%2C%20ofrecer%20recomendaciones%20personalizadas%20de%20productos%2C%20servicios%20y%20productos%20b%C3%A1sicos%2C%20y%20realizar%20marketing%20personalizado%20basado%20en%20las%20necesidades%20individuales%20es%20una%20gran%20ventaja%20del%20marketing%20online%20sobre%20el%20marketing%20tradicional.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3ECombinado%20con%20el%20software%20de%20an%C3%A1lisis%20de%20datos%20JMP%2C%20puede%20realizar%20un%20an%C3%A1lisis%20en%20profundidad%20del%20comportamiento%20de%20consumo%20de%20los%20usuarios%20de%20compras%20en%20l%C3%ADnea%2C%20lo%20que%20puede%20ayudar%20a%20las%20empresas%20a%20dise%C3%B1ar%20p%C3%A1ginas%20de%20colecci%C3%B3n%20de%20productos%20y%20actividades%20promocionales%20que%20satisfagan%20mejor%20las%20necesidades%20de%20los%20grupos%20de%20clientes%20objetivo%20y%20a%20dar%20respuestas%20oportunas%20a%20posibles%20problemas%20descubiertos%20y%20mejoras%2C%20aportando%20as%C3%AD%20mayores%20beneficios%20a%20la%20empresa.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%26gt%3B%26gt%3B%3CA%20href%3D%22https%3A%2F%2Fwww.jmp.com%2Fzh_tw%2Fdownload-jmp-free-trial.html%3Futm_source%3Djmp-community%26amp%3Butm_medium%3Dposts%26amp%3Butm_campaign%3D1111%22%20target%3D%22_blank%22%20rel%3D%22noopener%20noreferrer%22%3E%20Descargue%20JMP%2016%20ahora%20y%20obtenga%20una%20prueba%20gratuita%20de%2030%20d%C3%ADas%3C%2FA%3E%20%26lt%3B%26lt%3B%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-TEASER%20id%3D%22lingo-teaser-435832%22%20slang%3D%22zh-TW%22%3E%3CP%3EDouble%20Eleven%20es%20una%20temporada%20de%20promoci%C3%B3n%20anual%20para%20el%20comercio%20minorista%20de%20comercio%20electr%C3%B3nico.%20Todas%20las%20empresas%20y%20marcas%20de%20comercio%20electr%C3%B3nico%20se%20est%C3%A1n%20preparando%20y%20disparando%20a%20toda%20m%C3%A1quina.%20Si%20las%20marcas%20quieren%20tomar%20la%20iniciativa%20en%20la%20guerra%20del%20comercio%20electr%C3%B3nico%2C%20los%20conocimientos%20de%20los%20consumidores%20son%20esenciales.%20Cuanto%20m%C3%A1s%20comprenda%20la%20marca%20el%20comportamiento%20de%20compra%20de%20los%20consumidores%2C%20m%C3%A1s%20eficazmente%20podr%C3%A1%20ayudar%20a%20las%20empresas%20a%20llevar%20a%20cabo%20actividades%20de%20marketing%20m%C3%A1s%20espec%C3%ADficas.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EEste%20art%C3%ADculo%20utiliza%20el%20an%C3%A1lisis%20de%20datos%20para%20analizar%20varios%20factores%20clave%20del%20comercio%20electr%C3%B3nico%2C%20explicar%20qu%C3%A9%20factores%20pueden%20afectar%20las%20ventas%20y%20ayudar%20al%20comercio%20minorista%20a%20encontrar%20informaci%C3%B3n%20para%20aumentar%20las%20ventas.%3C%2FP%3E%3C%2FLINGO-TEASER%3E
Choose Language Hide Translation Bar
JMP_Taiwan
Level VI
雙十一數據解密:電商銷售額與哪些因素有關?數據分析告訴你

購物者的年度春晚「雙十一」購物狂歡節,你下了多少單?

雖然今年小編買的不算太多,但也算是為「雙十一」貢獻了一份力量吧!

雙十一做為電商零售一年一度的促銷大季,各家電商和品牌方都在摩拳擦掌,火力全開,品牌方想要在電商大戰中拔得頭籌,對於消費者洞察就必不可少,品牌方對消費者的購買行為瞭解地越透徹,就越能有效地幫助企業更有針對性地開展市場行銷活動。

 

本篇文章透過數據分析的方式,針對電商的幾個關鍵因子作分析,解釋哪些可能因子影響銷售額,幫助電商零售找到提升銷售額的洞察。

 

今天,我們就借助文獻Sakar, C.O., Polat, S.O., Katircioglu, M. et al. Neural Comput & Applic (2018) 中的一份公開樣本資料,結合JMP軟體來對網購使用者購買行為做一些有趣的探索性資料分析。

 

Step.1 資料獲取

原始資料來源

原始資料的獲取,可以通過網址下載csv格式原始資料,並通過JMP打開;也可以直接利用JMP的網頁讀取功能,直接獲取網頁端資料。

(JMP操作:文件-> 從internet打開 ->網頁)

 

Michelle_Wu_0-1636705308617.png

資料背景介紹

該資料集包含12,330 名網購用戶一年內在該網站的購買行為,以及對應的17個使用者行為記錄和最終交易結果。其中17個行為記錄,包括10個數值型特徵,7個分類型特徵。

 

Michelle_Wu_1-1636705308642.png

 

  1. 基本資訊

管理類網頁,管理類停留時間,資訊類網頁,資訊類停留時間,產品類網頁,產品類停留時間,表示用戶在不同類型網頁上的打開數量及停留時間總和。

 

  1. 跳出率

跳出率表示從某個特定路徑進入網站頁面,有多少百分比的用戶什麼都沒有做,就直接離開了網站,它既可作為衡量整個網站的度量,也可作為衡量頁面的度量。

 

  1. 退出率

退出率表示對某一個特定頁面而言,從這個頁面離開網站占所有訪問到這個頁面的百分比,一般作為衡量頁面的度量;

 

  1. 頁面價值

頁面價值表示使用者在完成交易之前訪問過的網頁的平均值;

 

  1. 特殊日

特殊日,表示網站存取時間與特定特殊日子的間隔;

 

  1. 其他

此外還包括使用者使用的作業系統、流覽器、區域、流量類型、訪客類型,是否為週末以及一年中的月份資訊。

 

Step.2 視覺化探索性分析

跳出率高低,關係到網路行銷的成功與否

客戶僅僅查看單個頁面後退出,讓品牌方很難有機會說服消費者購買產品,畢竟他們只流覽了一頁。讓我們來查看下面跳出率的情況吧。

(JMP操作:分析-> 分佈)

 

Michelle_Wu_2-1636705308657.png

 

從圖上可以看出,90%客戶的跳出率低於6%,所有用戶的平均跳出率只有2%,是不是很完美?請先不要著急高興。它可能是不準確的,或許是網站的分析跟蹤代碼如何集成到網站出現了技術問題。

 

因為根據以往經驗,「正常」跳出率在 40%-60% 之間,低於 40% 是非常罕見的,高於 70% 是令人擔憂且是需要趕緊採取行動的。

 

當前跳出率超出預期範圍並且看起來「好得令人難以置信」,應該是網站中的某個地方重複的分析代碼所造成。

 

使用者數值型特徵的多元探索

在做購物行為分析的時候,使用者的數值型特徵可能維度很多,借助JMP的多元分析方法,可以快速發現各個維度之間的關係,並有可能實現降維操作,為後續的特徵監控減少不必要的資源浪費。

(JMP操作:分析 -> 多元方法 ->多元)

 

Michelle_Wu_3-1636705308683.png

 

基於當前資料,使用者在各個不同類型網頁上的打開數量和停留時間成正相關, 這個很好理解。跳出率和退出率因為計算公式相似也成明顯正相關,此外,沒有發現明顯的數值特徵相關。

 

使用者上網方式對銷售的影響

通過下圖卡方檢驗的統計結果,我們可以捕捉到完成交易與否與客戶的作業系統、流覽器類型和流量類型之間的關係。

JMP操作:分析->以X擬合Y

 

Michelle_Wu_4-1636705308695.png

 

就作業系統而言,不同作業系統,使用者完成交易的比例是不一樣的。

通過圖形也能看出,作業系統是「2」的時候略高,而「1」和「3」則偏低,這可能意味著網站頁面對這些作業系統的支援不夠友好,如果要提升這部分的收益轉化,則需要做出相應的改進。同理,對流覽器類型和流量類型,我們也看到了他們對使用者完成交易比例的統計學影響,說明網站在這方面也有改進空間。

 

新老客戶和工作日/週末對銷售的影響

借助2.3部分卡方檢驗的方法,我們也能快速發現一些新老客戶和工作日/週末對銷售的規律,但這裡嘗試另一種資料表匯總的方法。

(JMP操作:分析-> 消費者研究 -> 分類)

 

Michelle_Wu_5-1636705308706.png

 

結合上面的圖形和資料,能清楚地看到:老客戶是網站訪問的主力,說明網站在客戶維繫上做得很好;但是我們也看到,不管是在平日(13.2% vs 26.1%)還是在週末(16.5% vs 21.9%),新客戶的完成交易的比例都要高於老客戶,這說明網站可以在老客戶的轉換率上做出些改進。

 

例如老客戶在購買商品的時候可以通過介紹新客戶的方式來享受更大的折扣,這樣既調動了老客戶的購買熱情,也為網站增加了更多的新客戶。

 

多樣分析結果的集中展示

如果想把各種分析圖表以報表的形式集中展示, 可以通過JMP的腳本功能,就可以一鍵實現報表連結資料的即時更新,節省大量的重複性手動操作。

(JMP操作:檔 -> 新建 -> 應用程式)

 

Michelle_Wu_6-1636705308726.png

 

以上是一些探索性資料分析的結果。下面,我們來進一步嘗試用資料採擷的方法對上面提到的使用者主要特徵與交易結果建立量化的統計模型。

 

Step.3 資料預測建模

通過決策樹,篩選影響銷售的關鍵特徵

決策樹是一種有監督學習方法,能夠從一系列有特徵和標籤的資料中總結出決策規則,並用樹狀圖的結構來呈現這些規則,結果解釋方便,在各個行業和領域都有著廣泛的應用。

(JMP操作:分析 -> 預測建模 -> 分割)

 

Michelle_Wu_7-1636705308746.png

從圖中我們可以觀察決策樹的各個階段,從上到下顯示影響交易結果的最重要的特徵。

 

其中最重要的是網頁價值,網頁價值低於0.067和高於0.067的成交比率分別為3.85%和56.4%,差距明顯。後面還有些比較重要的特徵參數也都一併列出,比如跳出率,月份和產品相關頁面等,這些資訊都是驅動交易結果的重要因素,現在可以快速被挑選展示出來,從而讓品牌方有了一個更清晰的改進優化重點。

 

優中選優,更多資料採擷方法的嘗試

除了決策樹,JMP還提供了諸如神經網路、隨機森林、提升樹和支援向量機等多種資料採擷的方法,並且可以輕鬆完成模型演算法之間的比較,實現優中選優。

 

Michelle_Wu_8-1636705308828.png

 

通過JMP Pro 16 全新的模型篩選來對多種資料採擷方法一次性完成比較,在這之前,為了防止構建的模型過擬合,可以先按照訓練集,測試集,驗證集 6:2:2的比例對原始資料進行拆分,生成驗證列。

(JMP操作:分析->預測建模 ->生成驗證列)

 

Michelle_Wu_9-1636705308840.png

 

如下圖所示,一次輸入特徵參數和交易結果,平臺會同時構建多個演算法模型,並自動篩選出當前的最佳建模方法為隨機森林,模型在測試集上的表現,也就是對將來新資料的預測能力R方達到了0.6,預測準確性達到了90.7%。

 

精確的預測模型可以説明品牌方儘早瞭解每一個使用者可能的交易結果,尤其是預測交易失敗的情況,提早做出應對和補救,比如打折,比如在客戶退出頁面前彈出挽留介面等。

(JMP操作:分析 -> 預測建模 ->模型篩選)

 

Michelle_Wu_10-1636705308857.png

 

怎麼樣?看了今天的分析,是不是讓你在「電商大戰」中更有信心了呢?

 

對品牌方而言,提供個性化產品、服務與商品推薦,並針對個別需求做出一對一行銷,是網路行銷相對于傳統行銷的一個巨大優勢。

 

結合JMP資料分析軟體,您能夠透過對網購用戶消費行為的深入分析,可以幫助企業設計出更能滿足目標顧客群需求的商品集合頁與促銷活動,並及時針對發現的潛在問題,做出相應的改進,從而為企業帶來更大的收益。

 

>> 立即下載JMP 16,即享30天免費試用 <<

 

Last Modified: Nov 12, 2021 9:56 AM