My solution is to run the quantile regressions in a loop by quantile. The results match the results I get using the quantreg package in R.  Here is an example of the script using the BigClass data.
Names Default to Here( 1 );
dt = Open("$SAMPLE_DATA/Big Class.jmp"); // open data table
q = Index(0.1, 0.90, 0.1); // create row vector of required quantiles
For(i = 1, i<=NItems(q), i++, //loop through the list of quantiles and run model by quantile
run = dt << Fit Model(
	Y( :Weight ),
	Effects( :Height ),
	Personality( "Generalized Regression" ),
	Generalized Distribution( "Quantile Regression" ),
	Quantile( q[i] ), // quantile
	Run( Fit( Estimation Method( Maximum Likelihood ), Validation Method( None ) ) ),
	SendToReport( Dispatch( {}, "Model Launch", OutlineBox, {Close( 0 )} ) )
);
run << (Fit[1] << Save Residual Formula); // save residuals to compare with R "quantreg" package
run << Close Window;
);
Names Default To Here( 1 );
R Init(); // Initializing R 
R Submit( //submit to R
	"\[
		#install.packages("quantreg") # installing quantile regression package
		library(quantreg) #using quantreg after installed
		setwd("path to file") # set working directory 
		dt <- read.csv("BigClass.csv", header = TRUE) # read in the data
		attach(dt) 
		head(dt)
		
		fit1 <- rq(Weight ~ Height, tau=seq(0.1, 0.9, by=.1), data=dt) # run the qr
		r1 <- resid(fit1) # output residuals
		
	]\"
); // end R Submit