still not really sure what you need, and if you need a scripting solution etc.
If you're looking at the example script and screenshot,
do you want the fit parameters of the distribution, like for the exponential fit below?
This would be no problem, you could JMP let calculate, in that case you save the formula and further process if needed ...
Names Default To Here( 1 );
dt = Open( "$SAMPLE_DATA/Quality Control/Failure Raw Data.jmp" );
/*
obj = dt << Pareto Plot( Cause( :failure ), , Per Unit Rates( 1 ));
report(obj)[Table Box( 1 )]<< make into data table;
*/
dt_sum = dt << Summary( Group( :failure ), Freq( "None" ), Weight( "None" ) );
dt_sum << Distribution(
Continuous Distribution(
Column( :N Rows ),
CDF Plot( 1 ),
Fit Normal( Show Fit( 0 ) ),
Fit Cauchy( Show Fit( 0 ) ),
Fit Student's t( Show Fit( 0 ) ),
Fit Lognormal( Show Fit( 0 ) ),
Fit Exponential,
Fit Gamma( Show Fit( 0 ) ),
Fit Johnson( Show Fit( 0 ) ),
Fit SHASH( Show Fit( 0 ) ),
Fit Normal 2 Mixture( Show Fit( 0 ) ),
Fit Weibull( Show Fit( 0 ) )
),
SendToReport(
Dispatch( {"N Rows"}, "Compare Distributions", OutlineBox, {Close( 1 )} ),
Dispatch( {"N Rows"}, "Quantiles", OutlineBox, {Close( 1 )} ),
Dispatch( {"N Rows"}, "Summary Statistics", OutlineBox, {Close( 1 )} ),
Dispatch( {"N Rows"}, "Fitted Exponential Distribution", OutlineBox, {Close( 1 )} )
)
);
Georg