To add to @Dan_Obermiller comment, I believe K Means does center the columns just not scale them when using that option, so to replicate the analysis with PCA you would want to center the columns first and then do an unscaled PCA. If you run the script below the bivariate score plots should match.
Names default to here(1);
dt = Open( "$Sample_data/Lipid Data.jmp" );
//Center columns
dt << New Column("Age Centered", Numeric, "Continuous", Format("Best", 10), Formula(:Age - Col Mean(:Age)));
dt << New Column("Weight Centered", Numeric, "Continuous", Format("Best", 10), Formula(:Weight - Col Mean(:Weight)));
dt << New Column("Cholesterol Centered", Numeric, "Continuous", Format("Best", 10), Formula(:Cholesterol - Col Mean(:Cholesterol)));
dt << New Column("Triglycerides Centered", Numeric, "Continuous", Format("Best", 10), Formula(:Triglycerides - Col Mean(:Triglycerides)));
//Window with both analyses:
New Window( "Compare",
H List Box(
//K Means common scale:
dt << K Means Cluster(
Y( :Age, :Weight, :Cholesterol, :Triglycerides ),
Columns Scaled Individually( 0 ),
{Single Step( 0 ), Number of Clusters( 3 ), K Means Cluster,
Go( Show Biplot Rays( [0, 0, 1] ), Biplot( 1 ) )}
),
//PCA unscaled using centered columns
dt << Principal Components(
Y( :Age Centered, :Weight Centered, :Cholesterol Centered, :Triglycerides Centered ),
Estimation Method( "Default" ),
"on Unscaled"
)
)
);