I am not sure what you did. I used Big Class as an example. I modeled :weight with :age, :sex, and :height as inputs. I published the model to Formula Depot. I generated Python code. Here it is:
from __future__ import division
import jmp_score as jmp
from math import *
import numpy as np
""" ====================================================================
Copyright (C) 2022-2023 JMP Statistical Discovery LLC. All rights reserved.
Notice: The following permissions are granted provided that the above
copyright and this notice appear in the score code and any related
documentation. Permission to copy, modify and distribute the score
code generated using JMP (r) software is limited to customers of JMP
Statistical Discovery LLC ("JMP") and successive third parties, all
without any warranty, express or implied, or any other obligation by
JMP. JMP and all other JMP Statistical Discovery LLC product and
service names are registered trademarks or trademarks of JMP
Statistical Discovery LLC in the USA and other countries. Except as
contained in this notice, the name of JMP shall not be used in the
advertising or promotion of products or services without prior
written authorization from JMP Statistical Discovery LLC.
==================================================================== """
""" Python code generated by JMP 17.2.0 """
def getModelMetadata():
return {"creator": u"Neural", "modelName": u"", "predicted": u"weight", "table": u"Big Class", "version": u"17.2.0", "timestamp": u"2023-06-22T15:05:18Z"}
def getInputMetadata():
return {
u"age": "float",
u"height": "float",
u"sex": "str"
}
def getOutputMetadata():
return {
u"Predicted weight": "float"
}
def score(indata, outdata):
sex_asCode = jmp.match(indata[u"sex"],{u"F":0,u"M":1}, np.nan)
H1_1 = tanh((12.9380978259799 + -0.216077718694819 * indata[u"height"] + 0.5 * jmp.match(indata[u"age"],{12:-0.0752869145775503,13:1.43808466048513,14:2.51676030243735,15:1.74966392837427,16:-3.99748804536747,17:-1.63173393135173}, np.nan) + 0.5 * jmp.match(sex_asCode,{0:-1.0888433588967,1:1.0888433588967}, np.nan)))
H1_2 = tanh((19.7761183161641 + -0.331952318291445 * indata[u"height"] + 0.5 * jmp.match(indata[u"age"],{12:-0.476738410666868,13:-2.86567218066002,14:0.848951695382413,15:1.24849250460232,16:6.92106266494234,17:-5.67609627360018}, np.nan) + 0.5 * jmp.match(sex_asCode,{0:1.56127362393991,1:-1.56127362393991}, np.nan)))
H1_3 = tanh((1.43246192499634 + -0.037575857404148 * indata[u"height"] + 0.5 * jmp.match(indata[u"age"],{12:-0.519079596013513,13:-2.26923722344442,14:3.65113577518731,15:2.78561481785367,16:1.59523547291602,17:-5.24366924649907}, np.nan) + 0.5 * jmp.match(sex_asCode,{0:-0.207032194138191,1:0.207032194138191}, np.nan)))
outdata[u"Predicted weight"] = 100.343111337815 + -28.0586522707582 * H1_1 + -16.1719623964746 * H1_2 + 2.89859037837539 * H1_3
return outdata[u"Predicted weight"]
I do not see the function you asked about.