I was about to close your data set this morning, and thought of one more thing.
A simple ordinary least squares analysis might be wrong for the question you are asking.
It looks like your time column is something like time to failure. In this case you need to know probability of failure at a specific time. e.g. the B10 time, as a function of temperature and material.
In this case a Parametric Survival Fit is a good choice
Fit Model(
Y( :Name( "Life (hours)" ) ),
Effects(
:Temperature & RS,
:Material Type,
:Temperature * :Temperature,
:Temperature * :Material Type
),
Personality( "Parametric Survival" ),
Distribution( "Weibull" ),
Run(
Likelihood Ratio Tests( 1 ),
Quantile Profiler(
1,
Confidence Intervals( 1 ),
Adapt Y Axis( 1 ),
Term Value(
Temperature( 68, Lock( 0 ), Show( 1 ) ),
Material Type( 3, Lock( 0 ), Show( 1 ) ),
Failure Probability( 0.1, Lock( 0 ), Show( 1 ) )
)
)
),
SendToReport(
Dispatch( {}, "Effect Summary", OutlineBox, {Close( 1 )} ),
Dispatch( {}, "Whole Model Test", OutlineBox, {Close( 1 )} ),
Dispatch( {}, "Parameter Estimates", OutlineBox, {Close( 1 )} ),
Dispatch( {}, "Wald Tests", OutlineBox, {Close( 1 )} ),
Dispatch( {}, "Effect Likelihood Ratio Tests", OutlineBox, {Close( 1 )} ),
Dispatch(
{"Quantile Profiler"},
"10000",
ScaleBox,
{Min( 0 ), Max( 220.470532541004 ), Inc( 25 ), Minor Ticks( 0 )}
),
Dispatch(
{"Quantile Profiler"},
"Profiler",
FrameBox,
{Frame Size( 208, 207 )}
),
Dispatch(
{"Quantile Profiler"},
"Profiler",
FrameBox( 3 ),
{Frame Size( 208, 207 )}
),
Dispatch(
{"Quantile Profiler"},
"Profiler",
FrameBox( 5 ),
{Frame Size( 208, 207 )}
)
)
)
JMP Systems Engineer, Health and Life Sciences (Pharma)