I am not aware of a Cramer von test in JMP, however it is a simple matter to run it in Python using the JMP/Python interface
names default to here(1);
dt =
// Open Data Table: semiconductor capability.jmp
// → Data Table( "semiconductor capability" )
Open( "$SAMPLE_DATA/big class.jmp" );
data = (dt:height << get values);
python send(data);
python submit("
print( data )
");
python submit("
from scipy.stats import cramervonmises
# Example data
import numpy as np
np.random.seed(0)
# data = np.random.normal(loc=0, scale=1, size=100)
# Test against normal distribution
result = cramervonmises(data, 'norm')
print(result)
");
The above works for JMP 18 with it's integrated Python
To run this in versions earlier only a slight modification is required
names default to here(1);
dt =
// Open Data Table: semiconductor capability.jmp
// → Data Table( "semiconductor capability" )
dt = Open( "$SAMPLE_DATA/big class.jmp" );
python init();
data = (dt:height << get values)`;
python send(data);
python submit("
print( data )
");
python submit("
from scipy.stats import cramervonmises
# Example data
import numpy as np
np.random.seed(0)
# data = np.random.normal(loc=0, scale=1, size=100)
# Test against normal distribution
result = cramervonmises(data, 'norm')
print(result)
");
Jim