uniwander: It's not the design per se that requires your thinking around "... the 'normal' optimal design assumes that the error is normally distributed and standard or generalized linear regression is used...". It's the ordinary least squares regression modeling technique (which is the modeling technique the naïve gravitate towards) that is sensitive to these assumptions. The design is just a means to create a coherent set of treatment combinations to support (in the Custom Design platform) a user specified model containing main effects, interactions, or other higher order terms as you require.
So right away if someone tells me they have a categorical or ordinal response...I'm NEVER using OLS to analyze the results...but gravitate to some other technique. Two you suggest are nominal logistic or ordinal logistic regression. I do recommend you change the modeling type and data type in the column properties window as you suggest. This way, even if you aren't modeling...the fact that the variable is categorical or ordinal will always travel along with that variable no matter WHICH JMP analysis platform you are working with. In the Fit Model platform, once you cast responses into the Y window...JMP eavesdrops on the data and modeling type for the response and will toggle to what it thinks is the most appropriate specific modeling personality.
You do not need to necessarily have replication built into your design to make the magic of nominal or ordinal logistic regression work...there are lots of reasons to replicate a design...but it's not required from a modeling perspective.
Also I always start my empirical analysis, BEFORE modeling, by plotting responses in both a univariate and bivariate view of the world using the Distribution and Fit Y by X platforms. Graph Builder can also do some of this heavy lifting too. I shout from the rooftops whenever I can, before beginning modeling, "plot the data, Plot The Data, PLOT THE DATA" to help you find outliers, suspicious observations, or observations that don't make sense...and does the results 'fit' with prior process knowledge.
A good place to start with looking at examples is the JMP documentation itself...here is the landing page that can serve as an entry portal for you in the Online JMP Documentation:
Logistic Regression with Nominal or Ordinal Responses