First, a point of clarification. For Scheffe mixture models there IS an intercept. It is not displayed because it is combined with the main effect parameter estimates. This is NOT a no-intercept model. You can confirm that you are fitting a Scheffe model by looking at the Analysis of Variance table. It should say "Testing Against Reduced Model: Y = Mean". If it does not, you are not fitting a Scheffe mixture model as you think.
Now for the high VIFs. This is VERY common for a mixture model. There is little that can be done for it. First, are you using pseudocomponent coded values? If the design was created in JMP, this should be used automatically. You can see if the pseudocomponent coding is used by looking at the parameter estimates. You should see something like (X1-c)/d where c and d are constants. If you do not see this, you can turn on the pseudocomponent coding column property, then fit your model.
Even with pseudocomponent coding, the VIFs could be very high. The more constrained your mixture components are, the higher the VIFs will be. Although high VIFs are not desirable, the goal of a mixture model is prediction. You can still obtain good predictions from the model. Remember that this is the ultimate goal. The high VIFs will cause higher standard errors for the parameter estimates which affects the testing. Reducing the model would be more difficult, but you can use the model for prediction.
Dan Obermiller