Hello,
I have a problem with calculating the standard error of the parameter estimates using minimize() with the optional parameter <<showdetails which returns a few extra values including the Hessian Matrix.
My (rather basic) understanding of the Hessian is that the diagonal elements should be a good approximation of the inverse of the variances. However, I do not get a good agreement between thus extracted values and the ones I get from simple linear regression.
To illustrate here is an example:
x = [1.309, 1.471, 1.49, 1.565, 1.611, 1.68];
y = [2.138, 3.421, 3.597, 4.34, 4.882, 5.66];
b1 = 1; /*starting value for b1 */
b2 = 5; /*starting value for b2 */
sseExpr = Expr(
Summation( i = 1, 6, (y[i] - (b1 +b2*x[i] )) ^ 2 )
);
//Use Minimize
{objVal, iters, gradient, hessian} = Minimize( sseExpr, {b1, b2} ,<<showdetails(true));
//Use Linear Regression
{Estimates, Std_Error, Diagnostics} = Linear Regression( y, x, <<printToLog );
min_stderror=sqrt(inverse(hessian)/nrows(x));
show("Parameter b1=",Estimates[1],b1);
show("Parameter b2",Estimates[2],b2);
show("Std_error in b1",std_error[1],min_stderror[1,1]);
show("Std_error in b2",std_error[2],min_stderror[2,2]);
The Result from this is shown below
nParm=2 Newton ******************************************************
Iter nFree Objective RelGrad NormGrad2 Ridge nObj nGrad nHess Parm0 Parm1
0 2 128.6484 20788.83 4982.355 0 1 1 1 1 5
1 2 0.074605 7.56e-25 1.88e-25 0 1 1 1 -10.427 9.489346
Convergence SUCCESS: Gradient
Time: 0.0166666667209938
********************************************************************
************ Parameter Estimates **************************
********************************************************************
Term Estimates Std Error t Ratio Prob>|t|
********************************************************************
Intercept -10.42696 0.72006 -14.48064 0.00013
b1 9.48935 0.47199 20.10486 0.00004
********************************************************************
RSquare:0.990201015051942
RSquare Adj:0.987751268814928
"Parameter b1=";
Estimates[1] = -10.4269614637334;
b1 = -10.4269614637335;
"Parameter b2";
Estimates[2] = 9.48934569169413;
b2 = 9.48934569169416;
"Std_error in b1";
std_error[1] = 0.720062429496937;
min_stderror[1,1] = 1.5220348519284;
"Std_error in b2";
std_error[2] = 0.471992539497802;
min_stderror[2,2] = 0.997676125760012;
While the parameter estimates are in perfect agreement, the errors are not.
thus the question: How to compute the parameter std error (or standard deviation) from the Hessian returned by the Minimize() function?
Thanks for any assistance