Hi,
I'm working with measurement data that should follow a specific distribution.
My goal is to create a Folded Normal and a Rayleigh to compare along with other distributions already programmed by default in JMP in order to see if my data follows the expected one.
Here I fit all distributions with my data and look if the normal distribution fits the best according to the AICc. I would like to do the same with a Folded Normal and a Rayleigh law.

Here is the corresponding code :
DistributionChart = Distribution(//Creation of the distribution chart
Continuous Distribution(
Column( dTempoClean:Ecart ),
Quantiles( 0 ),
Normal Quantile Plot( 1 ),
Process Capability( 0 )
),
Histograms Only
SendToReport(
Dispatch( {"Ecart mesurée"}, "1", ScaleBox,//Deviation data is studied
{Add Ref Line(lst, "Solid", "Blue", "Tol. Inf.", 1 ),
Add Ref Line(ust, "Solid", "Blue", "Tol. sup.", 1 ),
Add Ref Line(0, "Solid", "Blue", "Objectif", 1 )}
),
Dispatch( {"Ecart mesurée"}, "", Picture Box( 4 ),
{Set Summary Behavior( "Collapse" )}
)
)
);
DistributionChart << Fit All;//Fit all default distributions
scb = Report(DistributionChart)[Outline Box("Compare Distributions"), Table Box(1), NumberColBox("AICc")];//Get AICc value
scb1 = Report(DistributionChart)[Outline Box("Compare Distributions"), Table Box(1), StringColBox(1)];//Get best distribution name
k=1;
while (scb[k]==".",k++)
bestdist = scb1[k];
How can I add a Folded Normal and a Rayleigh distribution to the Fit All while getting all the corresponding statistical data (Mean, Standard Deviation, Cp, Cpk...) ?
Thank you very much for your help !