You are correct. Defining factor constraints for a design using JMP is unique to custom design. Other design methods, except for extreme vertices simplex designs, do not provide a way to introduce factor constraints.
Custom design does not use factorial combinations to build a design. It uses the coordinate exchange algorithm. Custom design does not attempt to satisfy any goal based on combinations. It satisfies an optimality criterion, D-optimality by default. The estimation of the effects of the continuous factor Speed are better served with the custom design than by the factorial design. If you require all combinations, for some reason other than estimating the model parameters, you could enter Speed as a categorical factor with 7 levels and then adding runs should eventually achieve at least one run for every combination.
Yes, disallowed combinations are required because the linear constraint only works with continuous factors.
The design is really just about data collection to fit the linear model using regression. You can always modify the custom design, or the design from using any method, to suit your purpose or situation, and it won't break. I recommend that you simulate the response. The simulation can be nonsense - it is just so that you can carry your experiment through the analysis step to be sure that there are no singularities. If so, then your design really did break.