cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

Discussions

Solve problems, and share tips and tricks with other JMP users.
%3CLINGO-SUB%20id%3D%22lingo-sub-9185%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EJMP%EB%8A%94%20ANOVA%20%EB%B0%8F%20Krusal-Wallis%EC%97%90%20%EB%8C%80%ED%95%B4%20Bonferroni%20%EB%B3%B4%EC%A0%95%EC%9D%84%20%EC%82%AC%EC%9A%A9%ED%95%A9%EB%8B%88%EA%B9%8C%3F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-9185%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%26lt%3Bmeta%20http-equiv%3D%22Content-Type%22%20content%3D%22text%2Fhtml%3B%20charset%3DUTF-8%22%20%2F%26gt%3B%3CP%3E%EC%95%88%EB%85%95%ED%95%98%EC%84%B8%EC%9A%94%2C%20ANOVA%EB%A1%9C%20%EB%8D%B0%EC%9D%B4%ED%84%B0%20%EC%84%B8%ED%8A%B8%EB%A5%BC%20%EB%B6%84%EC%84%9D%ED%95%98%EA%B3%A0%20JMP%EB%A5%BC%20%EC%82%AC%EC%9A%A9%ED%95%98%EC%97%AC%20Kruskal-Wallis%20%ED%85%8C%EC%8A%A4%ED%8A%B8%EB%A1%9C%20%EB%B3%84%EB%8F%84%EC%9D%98%20%EB%8D%B0%EC%9D%B4%ED%84%B0%20%EC%84%B8%ED%8A%B8%EB%A5%BC%20%EB%B6%84%EC%84%9D%ED%95%98%EB%A0%A4%EA%B3%A0%20%ED%95%A9%EB%8B%88%EB%8B%A4.%20%EC%B2%AB%20%EB%B2%88%EC%A7%B8%20%EB%8D%B0%EC%9D%B4%ED%84%B0%20%EC%84%B8%ED%8A%B8%EC%9D%98%20%EA%B2%BD%EC%9A%B0%20ANOVA%EB%A5%BC%20%EC%82%AC%EC%9A%A9%ED%95%98%EA%B3%A0%20%EC%82%AC%ED%9B%84%20%EB%B9%84%EA%B5%90%EB%A5%BC%20%EC%9C%84%ED%95%B4%20Tukey%EC%9D%98%20HSD%20All-Pairs%EB%A5%BC%20%EC%B6%94%EC%A0%81%ED%96%88%EC%8A%B5%EB%8B%88%EB%8B%A4.%20Tukey%EA%B0%80%20%EB%B3%B4%EA%B3%A0%ED%95%9C%20p-%EA%B0%92%EC%9D%B4%20%EC%9C%A0%EC%9D%98%ED%95%98%EA%B2%8C%20%EC%88%98%EC%A0%95%EB%90%9C%20%EA%B0%92%EC%9C%BC%EB%A1%9C%20%EB%82%98%EC%97%B4%EB%90%98%EC%96%B4%20%EC%9E%88%EC%8A%B5%EB%8B%88%EA%B9%8C%3F%20%EC%95%84%EB%8B%88%EB%A9%B4%20%EC%A7%81%EC%A0%91%20%EC%88%98%EC%A0%95%EC%9D%84%20%EC%A0%81%EC%9A%A9%ED%95%B4%EC%95%BC%20%ED%95%A9%EB%8B%88%EA%B9%8C%3F%20%EB%98%90%ED%95%9C%20%EB%91%90%20%EB%B2%88%EC%A7%B8%20%EA%B2%80%EC%A0%95(Kruskal-Wallis)%EC%9D%98%20%EA%B2%BD%EC%9A%B0%20p-%EA%B0%92%EC%9D%B4%20%EC%A1%B0%EC%A0%95%EB%90%9C%20%EC%9C%A0%EC%9D%98%20%EC%88%98%EC%A4%80%EA%B3%BC%20%EB%B9%84%EA%B5%90%EB%90%A9%EB%8B%88%EA%B9%8C%3F%20%EC%95%84%EB%8B%88%EB%A9%B4%20%EC%9E%90%EC%B2%B4%20Bonferroni%20%EC%88%98%EC%A0%95%EC%9D%84%20%EC%A0%81%EC%9A%A9%ED%95%B4%EC%95%BC%20%ED%95%A9%EB%8B%88%EA%B9%8C%3F%20%EA%B0%90%EC%82%AC!%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-9188%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3ERe%3A%20JMP%EB%8A%94%20ANOVA%20%EB%B0%8F%20Krusal-Wallis%EC%97%90%20%EB%8C%80%ED%95%B4%20Bonferroni%20%EB%B3%B4%EC%A0%95%EC%9D%84%20%EC%82%AC%EC%9A%A9%ED%95%A9%EB%8B%88%EA%B9%8C%3F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-9188%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3E%EC%B2%9C%EB%A7%8C%EC%97%90%EC%9A%94!%3C%2FP%3E%3CP%3E%EC%A4%84%EB%A6%AC%EC%95%88%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-9187%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3ERe%3A%20JMP%EB%8A%94%20ANOVA%20%EB%B0%8F%20Krusal-Wallis%EC%97%90%20%EB%8C%80%ED%95%B4%20Bonferroni%20%EB%B3%B4%EC%A0%95%EC%9D%84%20%EC%82%AC%EC%9A%A9%ED%95%A9%EB%8B%88%EA%B9%8C%3F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-9187%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3E%EC%A4%84%EB%A6%AC%EC%95%88%2C%3C%2FP%3E%3CP%3E%3C%2FP%3E%3CP%3E%EC%9E%90%EC%84%B8%ED%95%9C%20%EB%8B%B5%EB%B3%80%20%EC%A0%95%EB%A7%90%20%EA%B0%90%EC%82%AC%ED%95%A9%EB%8B%88%EB%8B%A4!%20%EC%9D%B4%EA%B2%83%EC%9D%B4%20%EB%B0%94%EB%A1%9C%20%EB%82%B4%EA%B0%80%20%EB%B0%B0%EC%9A%B0%EA%B8%B0%EB%A5%BC%20%EB%B0%94%EB%9E%90%EB%8D%98%20%EA%B2%83%EC%9E%85%EB%8B%88%EB%8B%A4.%20%EB%A7%A4%EC%9A%B0%20%EB%8F%84%EC%9B%80%EC%9D%B4%20%EB%90%A9%EB%8B%88%EB%8B%A4!%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-9186%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3ERe%3A%20JMP%EB%8A%94%20ANOVA%20%EB%B0%8F%20Krusal-Wallis%EC%97%90%20%EB%8C%80%ED%95%B4%20Bonferroni%20%EB%B3%B4%EC%A0%95%EC%9D%84%20%EC%82%AC%EC%9A%A9%ED%95%A9%EB%8B%88%EA%B9%8C%3F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-9186%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3E%EC%95%88%EB%85%95%ED%95%98%EC%84%B8%EC%9A%94%20Opnightfall1771%EB%8B%98%2C%3C%2FP%3E%3CP%3E%3C%2FP%3E%3CP%3ETukey%20HSD%20%EA%B2%80%EC%A0%95%EC%9D%80%20%EC%9A%94%EC%9D%B8%20%EC%88%98%EC%A4%80%EC%9D%98%20%EC%88%98%EB%A5%BC%20%EA%B3%A0%EB%A0%A4%ED%95%98%EC%97%AC%20%EA%B0%80%EB%8A%A5%ED%95%9C%20%EB%8F%85%EB%A6%BD%EC%A0%81%EC%9D%B8%20%EC%8C%8D%EB%B3%84%20%EB%B9%84%EA%B5%90%20%EC%88%98%EC%97%90%20%EB%8C%80%ED%95%B4%20%EC%88%98%EC%A0%95%EB%90%9C%20p-%EA%B0%92%EC%9D%84%20%EB%B0%98%ED%99%98%ED%95%98%EB%AF%80%EB%A1%9C%20%ED%95%B4%EB%8B%B9%20p-%EA%B0%92%EC%9D%84%20%EC%A7%81%EC%A0%91%20%ED%95%B4%EC%84%9D%ED%95%A0%20%EC%88%98%20%EC%9E%88%EC%9C%BC%EB%A9%B0%20%EC%B6%94%EA%B0%80%20%EC%88%98%EC%A0%95%EC%9D%B4%20%ED%95%84%EC%9A%94%ED%95%98%EC%A7%80%20%EC%95%8A%EC%8A%B5%EB%8B%88%EB%8B%A4.%3C%2FP%3E%3CP%3E%3C%2FP%3E%3CP%3E%EC%96%B8%EA%B8%89%ED%95%9C%20Kruskal-Wallis%20%EA%B2%80%EC%A0%95%EC%9D%80%20Wilcoxon(%EB%98%90%EB%8A%94%20Mann-Whitney%20%EA%B2%80%EC%A0%95)%EC%9D%84%202%EC%88%98%EC%A4%80%20%EC%9D%B4%EC%83%81%EC%9D%98%20%EC%9A%94%EC%9D%B8%EC%9C%BC%EB%A1%9C%20%EC%9D%BC%EB%B0%98%ED%99%94%ED%95%9C%20%EA%B2%83%EC%9D%B4%EC%A7%80%EB%A7%8C%20%EC%8C%8D%EB%B3%84%20%EA%B2%80%EC%A0%95%EC%9D%84%20%EC%88%98%ED%96%89%ED%95%98%EB%8A%94%20%EA%B2%BD%EC%9A%B0%20%EB%B6%84%EC%84%9D%EC%9D%80%20Wilcoxon%20%EA%B2%80%EC%A0%95%EC%9D%BC%20%EB%BF%90%EC%9E%85%EB%8B%88%EB%8B%A4.%20(Fit%20Y%20by%20X)%20%EB%B9%84%EB%AA%A8%EC%88%98%20%26gt%3B%20%EB%B9%84%EB%AA%A8%EC%88%98%20%EB%8B%A4%EC%A4%91%20%EB%B9%84%EA%B5%90%20%26gt%3B%20Wilcoxon%20Each%20Pair%EB%A5%BC%20%EC%84%A0%ED%83%9D%ED%95%9C%20%EA%B2%B0%EA%B3%BC%EB%8A%94%20%EB%8B%A4%EC%9D%8C%EA%B3%BC%20%EA%B0%99%EC%8A%B5%EB%8B%88%EB%8B%A4.%3CSPAN%20style%3D%22text-decoration%3A%20underline%3B%22%3E%20~%20%EC%95%84%EB%8B%88%EB%8B%A4%3C%2FSPAN%3E%20%EC%97%AC%EB%9F%AC%20%EB%B9%84%EA%B5%90%EB%A5%BC%20%EC%9C%84%ED%95%B4%20%EC%88%98%EC%A0%95%EB%90%98%EC%97%88%EC%8A%B5%EB%8B%88%EB%8B%A4.%20%EC%9D%B4%EA%B2%83%EC%9D%80%20%EB%8B%A8%EC%88%9C%ED%9E%88%20%22%EA%B0%81%20%EC%8C%8D%20%ED%95%99%EC%83%9D%EC%9D%98%20t%22%20%EC%98%B5%EC%85%98%EC%9D%98%20%EB%B9%84%EB%AA%A8%EC%88%98%20%EB%B2%84%EC%A0%84%EC%9E%85%EB%8B%88%EB%8B%A4.%20%EC%9D%B4%EB%9F%AC%ED%95%9C%20p-%EA%B0%92%EC%9C%BC%EB%A1%9C%20Bonferroni%20%EB%B3%B4%EC%A0%95%EC%9D%84%20%EC%82%AC%EC%9A%A9%ED%95%A0%20%EC%88%98%20%EC%9E%88%EC%A7%80%EB%A7%8C%20%EC%9D%B4%EB%8A%94%20%EB%A7%8E%EC%9D%80%20%EC%9A%94%EC%9D%B8%20%EC%88%98%EC%A4%80%EC%97%90%EC%84%9C%20%EB%B9%A0%EB%A5%B4%EA%B2%8C%20%EC%A7%80%EB%82%98%EC%B9%98%EA%B2%8C%20%EB%B3%B4%EC%88%98%EC%A0%81%EC%9D%B4%EB%A9%B0%20Steel-Dwass%20All%20Pairs(%EB%B9%84%EB%AA%A8%EC%88%98%20%EB%8B%A4%EC%A4%91%20%EB%B9%84%EA%B5%90%EC%97%90%EC%84%9C%20%EC%82%AC%EC%9A%A9%20%EA%B0%80%EB%8A%A5)%EC%99%80%20%EA%B0%99%EC%9D%80%20%EB%B3%B4%EB%8B%A4%20%ED%9A%A8%EC%9C%A8%EC%A0%81%EC%9D%B8%20%EB%B6%84%EC%84%9D%EC%9D%84%20%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94%20%EA%B2%83%EC%9D%B4%20%EB%8D%94%20%EB%82%98%EC%9D%84%20%EA%B2%83%EC%9E%85%EB%8B%88%EB%8B%A4.%20%EC%9D%B4%EB%8A%94%20Tukey%20HSD%EC%9D%98%20%EB%B9%84%EB%AA%A8%EC%88%98%EC%A0%81%20%EB%93%B1%EA%B0%80%EB%AC%BC%EC%9E%85%EB%8B%88%EB%8B%A4.%20%ED%95%B4%EB%8B%B9%20%EB%B6%84%EC%84%9D%EC%97%90%EC%84%9C%20%EB%B0%98%ED%99%98%EB%90%9C%20p-%EA%B0%92%EC%9D%80%20Tukey%20HSD%EB%A5%BC%20%EC%8B%A4%ED%96%89%ED%95%98%EC%97%AC%20%EC%83%9D%EC%84%B1%EB%90%9C%20p-%EA%B0%92%EA%B3%BC%20%EB%A7%88%EC%B0%AC%EA%B0%80%EC%A7%80%EB%A1%9C%20%EC%88%98%EC%A0%95%EB%90%9C%20p-%EA%B0%92%EC%9E%85%EB%8B%88%EB%8B%A4.%3C%2FP%3E%3CP%3E%3C%2FP%3E%3CP%3E%EC%9D%B4%EA%B2%8C%20%EB%8F%84%EC%9B%80%EC%9D%B4%20%EB%90%98%EA%B8%B8%20%EB%B0%94%EB%9E%80%EB%8B%A4!%3C%2FP%3E%3CP%3E%3CSPAN%20style%3D%22font-size%3A%2010pt%3B%20line-height%3A%201.5em%3B%22%3E%3CBR%20%2F%3E%3C%2FSPAN%3E%3C%2FP%3E%3CP%3E%3CSPAN%20style%3D%22font-size%3A%2010pt%3B%20line-height%3A%201.5em%3B%22%3E%EC%A4%84%EB%A6%AC%EC%95%88%20%3C%2FSPAN%3E%3C%2FP%3E%3C%2FLINGO-BODY%3E
Choose Language Hide Translation Bar

Does JMP use Bonferroni correction for ANOVA and Krusal-Wallis?

Hi, I am trying to analyze a set of data with ANOVA and a separate set of data with a Kruskal-Wallis test using JMP. For my first set of data, I used an ANOVA and followed up with Tukey's HSD All-Pairs for post-hoc comparisons. Are the p-values that Tukey report lists as significant corrected values? Or do I need to apply the correction myself? Additionally, for a second test (Kruskal-Wallis), are the p-values compared with an adjusted significance level, or do I need to apply my own Bonferroni correction? Thanks!

1 ACCEPTED SOLUTION

Accepted Solutions
julian
Community Manager Community Manager

Re: Does JMP use Bonferroni correction for ANOVA and Krusal-Wallis?

Hi Opnightfall1771,

The Tukey HSD test returns p-values that have been corrected for the number of independent pair-wise comparisons that are possible given the number of factor levels -- so, those p-values may be interpreted directly and require no further corrections.

The Kruskal-Wallis test you mentioned is the generalization of the Wilcoxon (or Mann-Whitney test) to factors with more than 2 levels, however if you are performing pair-wise tests the analyses are just Wilcoxon tests. The results from selecting (in Fit Y by X) Nonparametric > Nonparametric Multiple Comparisons > Wilcoxon Each Pair are not corrected for multiple comparisons. This is simply the nonparametric version of the "Each Pair Student’s t" option. You could use Bonferroni corrections with those p-values, however this will quickly become overly conservative with many factor levels and you would be better off using a more efficient analysis, such as the Steel-Dwass All Pairs (available under Nonparametric Multiple Comparisons), which is the nonparametric equivalent of the Tukey HSD. The p-values returned in that analysis are corrected p-values, just like the p-values generated from running a Tukey HSD.

I hope this helps!


Julian

View solution in original post

3 REPLIES 3
julian
Community Manager Community Manager

Re: Does JMP use Bonferroni correction for ANOVA and Krusal-Wallis?

Hi Opnightfall1771,

The Tukey HSD test returns p-values that have been corrected for the number of independent pair-wise comparisons that are possible given the number of factor levels -- so, those p-values may be interpreted directly and require no further corrections.

The Kruskal-Wallis test you mentioned is the generalization of the Wilcoxon (or Mann-Whitney test) to factors with more than 2 levels, however if you are performing pair-wise tests the analyses are just Wilcoxon tests. The results from selecting (in Fit Y by X) Nonparametric > Nonparametric Multiple Comparisons > Wilcoxon Each Pair are not corrected for multiple comparisons. This is simply the nonparametric version of the "Each Pair Student’s t" option. You could use Bonferroni corrections with those p-values, however this will quickly become overly conservative with many factor levels and you would be better off using a more efficient analysis, such as the Steel-Dwass All Pairs (available under Nonparametric Multiple Comparisons), which is the nonparametric equivalent of the Tukey HSD. The p-values returned in that analysis are corrected p-values, just like the p-values generated from running a Tukey HSD.

I hope this helps!


Julian

Re: Does JMP use Bonferroni correction for ANOVA and Krusal-Wallis?

Julian,

Thank you so much for the detailed response! This is exactly what I was hoping to learn. Very helpful!

julian
Community Manager Community Manager

Re: Does JMP use Bonferroni correction for ANOVA and Krusal-Wallis?

You're welcome!

Julian

Recommended Articles