cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

Discussions

Solve problems, and share tips and tricks with other JMP users.
%3CLINGO-SUB%20id%3D%22lingo-sub-9185%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EJMP%E3%81%AFANOVA%E3%81%A8Krusal-Wallis%E3%81%AB%E3%83%9C%E3%83%B3%E3%83%95%E3%82%A7%E3%83%AD%E3%83%BC%E3%83%8B%E8%A3%9C%E6%AD%A3%E3%82%92%E4%BD%BF%E7%94%A8%E3%81%97%E3%81%BE%E3%81%99%E3%81%8B%EF%BC%9F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-9185%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%26lt%3Bmeta%20http-equiv%3D%22Content-Type%22%20content%3D%22text%2Fhtml%3B%20charset%3DUTF-8%22%20%2F%26gt%3B%3CP%3E%E3%81%93%E3%82%93%E3%81%AB%E3%81%A1%E3%81%AF%E3%80%81%E7%A7%81%E3%81%AFANOVA%E3%82%92%E4%BD%BF%E7%94%A8%E3%81%97%E3%81%A6%E3%83%87%E3%83%BC%E3%82%BF%E3%81%AE%E3%82%BB%E3%83%83%E3%83%88%E3%82%92%E5%88%86%E6%9E%90%E3%81%97%E3%80%81JMP%E3%82%92%E4%BD%BF%E7%94%A8%E3%81%97%E3%81%A6Kruskal-Wallis%E6%A4%9C%E5%AE%9A%E3%82%92%E4%BD%BF%E7%94%A8%E3%81%97%E3%81%A6%E5%88%A5%E3%81%AE%E3%83%87%E3%83%BC%E3%82%BF%E3%81%AE%E3%82%BB%E3%83%83%E3%83%88%E3%82%92%E5%88%86%E6%9E%90%E3%81%97%E3%82%88%E3%81%86%E3%81%A8%E3%81%97%E3%81%A6%E3%81%84%E3%81%BE%E3%81%99%E3%80%82%20%E6%9C%80%E5%88%9D%E3%81%AE%E3%83%87%E3%83%BC%E3%82%BF%E3%82%BB%E3%83%83%E3%83%88%E3%81%A7%E3%81%AF%E3%80%81ANOVA%E3%82%92%E4%BD%BF%E7%94%A8%E3%81%97%E3%80%81%E4%BA%8B%E5%BE%8C%E6%AF%94%E8%BC%83%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AB%E3%83%86%E3%83%A5%E3%83%BC%E3%82%AD%E3%83%BC%E3%81%AEHSD%E3%82%AA%E3%83%BC%E3%83%AB%E3%83%9A%E3%82%A2%E3%82%92%E3%83%95%E3%82%A9%E3%83%AD%E3%83%BC%E3%82%A2%E3%83%83%E3%83%97%E3%81%97%E3%81%BE%E3%81%97%E3%81%9F%E3%80%82%20%E3%83%86%E3%83%A5%E3%83%BC%E3%82%AD%E3%83%BC%E3%81%AE%E3%83%AC%E3%83%9D%E3%83%BC%E3%83%88%E3%81%AB%E8%A8%98%E8%BC%89%E3%81%95%E3%82%8C%E3%81%A6%E3%81%84%E3%82%8Bp%E5%80%A4%E3%81%AF%E3%80%81%E6%9C%89%E6%84%8F%E3%81%AA%E4%BF%AE%E6%AD%A3%E5%80%A4%E3%81%A8%E3%81%97%E3%81%A6%E3%83%AA%E3%82%B9%E3%83%88%E3%81%95%E3%82%8C%E3%81%A6%E3%81%84%E3%81%BE%E3%81%99%E3%81%8B%EF%BC%9F%20%E3%81%BE%E3%81%9F%E3%81%AF%E3%80%81%E8%87%AA%E5%88%86%E3%81%A7%E4%BF%AE%E6%AD%A3%E3%82%92%E9%81%A9%E7%94%A8%E3%81%99%E3%82%8B%E5%BF%85%E8%A6%81%E3%81%8C%E3%81%82%E3%82%8A%E3%81%BE%E3%81%99%E3%81%8B%EF%BC%9F%20%E3%81%95%E3%82%89%E3%81%AB%E3%80%812%E7%95%AA%E7%9B%AE%E3%81%AE%E6%A4%9C%E5%AE%9A%EF%BC%88Kruskal-Wallis%EF%BC%89%E3%81%AE%E5%A0%B4%E5%90%88%E3%80%81p%E5%80%A4%E3%81%AF%E8%AA%BF%E6%95%B4%E3%81%95%E3%82%8C%E3%81%9F%E6%9C%89%E6%84%8F%E6%B0%B4%E6%BA%96%E3%81%A8%E6%AF%94%E8%BC%83%E3%81%95%E3%82%8C%E3%81%BE%E3%81%99%E3%81%8B%E3%80%81%E3%81%9D%E3%82%8C%E3%81%A8%E3%82%82%E7%8B%AC%E8%87%AA%E3%81%AE%E3%83%9C%E3%83%B3%E3%83%95%E3%82%A7%E3%83%AD%E3%83%BC%E3%83%8B%E8%A3%9C%E6%AD%A3%E3%82%92%E9%81%A9%E7%94%A8%E3%81%99%E3%82%8B%E5%BF%85%E8%A6%81%E3%81%8C%E3%81%82%E3%82%8A%E3%81%BE%E3%81%99%E3%81%8B%EF%BC%9F%20%E3%81%82%E3%82%8A%E3%81%8C%E3%81%A8%E3%81%86%EF%BC%81%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-9188%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3ERe%EF%BC%9AJMP%E3%81%AFANOVA%E3%81%A8Krusal-Wallis%E3%81%AB%E3%83%9C%E3%83%B3%E3%83%95%E3%82%A7%E3%83%AD%E3%83%BC%E3%83%8B%E8%A3%9C%E6%AD%A3%E3%82%92%E4%BD%BF%E7%94%A8%E3%81%97%E3%81%BE%E3%81%99%E3%81%8B%EF%BC%9F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-9188%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3E%E3%81%A9%E3%81%86%E3%81%84%E3%81%9F%E3%81%97%E3%81%BE%E3%81%97%E3%81%A6%EF%BC%81%3C%2FP%3E%3CP%3E%E3%82%B8%E3%83%A5%E3%83%AA%E3%82%A2%E3%83%B3%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-9187%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3ERe%EF%BC%9AJMP%E3%81%AFANOVA%E3%81%A8Krusal-Wallis%E3%81%AB%E3%83%9C%E3%83%B3%E3%83%95%E3%82%A7%E3%83%AD%E3%83%BC%E3%83%8B%E8%A3%9C%E6%AD%A3%E3%82%92%E4%BD%BF%E7%94%A8%E3%81%97%E3%81%BE%E3%81%99%E3%81%8B%EF%BC%9F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-9187%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3E%E3%82%B8%E3%83%A5%E3%83%AA%E3%82%A2%E3%83%B3%E3%80%81%3C%2FP%3E%3CP%3E%3C%2FP%3E%3CP%3E%E7%B4%B0%E3%81%8B%E3%81%AA%E5%AF%BE%E5%BF%9C%E3%81%82%E3%82%8A%E3%81%8C%E3%81%A8%E3%81%86%E3%81%94%E3%81%96%E3%81%84%E3%81%BE%E3%81%97%E3%81%9F%EF%BC%81%20%E3%81%93%E3%82%8C%E3%81%AF%E3%81%BE%E3%81%95%E3%81%AB%E7%A7%81%E3%81%8C%E5%AD%A6%E3%81%B3%E3%81%9F%E3%81%84%E3%81%A8%E6%80%9D%E3%81%A3%E3%81%A6%E3%81%84%E3%81%9F%E3%82%82%E3%81%AE%E3%81%A7%E3%81%99%E3%80%82%20%E9%9D%9E%E5%B8%B8%E3%81%AB%E5%BD%B9%E7%AB%8B%E3%81%A1%E3%81%BE%E3%81%99%EF%BC%81%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-9186%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3ERe%EF%BC%9AJMP%E3%81%AFANOVA%E3%81%A8Krusal-Wallis%E3%81%AB%E3%83%9C%E3%83%B3%E3%83%95%E3%82%A7%E3%83%AD%E3%83%BC%E3%83%8B%E8%A3%9C%E6%AD%A3%E3%82%92%E4%BD%BF%E7%94%A8%E3%81%97%E3%81%BE%E3%81%99%E3%81%8B%EF%BC%9F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-9186%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3E%E3%81%93%E3%82%93%E3%81%AB%E3%81%A1%E3%81%AFOpnightfall1771%3C%2FP%3E%3CP%3E%3C%2FP%3E%3CP%3E%E3%83%86%E3%83%A5%E3%83%BC%E3%82%AD%E3%83%BCHSD%E6%A4%9C%E5%AE%9A%E3%81%AF%E3%80%81%E5%9B%A0%E5%AD%90%E3%83%AC%E3%83%99%E3%83%AB%E3%81%AE%E6%95%B0%E3%81%8C%E4%B8%8E%E3%81%88%E3%82%89%E3%82%8C%E3%81%9F%E5%A0%B4%E5%90%88%E3%81%AB%E5%8F%AF%E8%83%BD%E3%81%AA%E7%8B%AC%E7%AB%8B%E3%81%97%E3%81%9F%E3%83%9A%E3%82%A2%E3%83%AF%E3%82%A4%E3%82%BA%E6%AF%94%E8%BC%83%E3%81%AE%E6%95%B0%E3%81%AB%E5%AF%BE%E3%81%97%E3%81%A6%E4%BF%AE%E6%AD%A3%E3%81%95%E3%82%8C%E3%81%9Fp%E5%80%A4%E3%82%92%E8%BF%94%E3%81%97%E3%81%BE%E3%81%99%E3%80%82%E3%81%97%E3%81%9F%E3%81%8C%E3%81%A3%E3%81%A6%E3%80%81%E3%81%93%E3%82%8C%E3%82%89%E3%81%AEp%E5%80%A4%E3%81%AF%E7%9B%B4%E6%8E%A5%E8%A7%A3%E9%87%88%E3%81%95%E3%82%8C%E3%80%81%E3%81%9D%E3%82%8C%E4%BB%A5%E4%B8%8A%E3%81%AE%E4%BF%AE%E6%AD%A3%E3%81%AF%E5%BF%85%E8%A6%81%E3%81%82%E3%82%8A%E3%81%BE%E3%81%9B%E3%82%93%E3%80%82%3C%2FP%3E%3CP%3E%3C%2FP%3E%3CP%3E%E3%81%82%E3%81%AA%E3%81%9F%E3%81%8C%E8%A8%80%E5%8F%8A%E3%81%97%E3%81%9F%E3%82%AF%E3%83%A9%E3%82%B9%E3%82%AB%E3%83%AB%E3%83%BB%E3%82%A6%E3%82%A9%E3%83%AA%E3%82%B9%E6%A4%9C%E5%AE%9A%E3%81%AF%E3%80%81%E3%82%A6%E3%82%A3%E3%83%AB%E3%82%B3%E3%82%AF%E3%82%BD%E3%83%B3%EF%BC%88%E3%81%BE%E3%81%9F%E3%81%AF%E3%83%9E%E3%83%B3%E3%83%9B%E3%82%A4%E3%83%83%E3%83%88%E3%83%8B%E3%83%BC%E6%A4%9C%E5%AE%9A%EF%BC%89%E3%82%922%E3%83%AC%E3%83%99%E3%83%AB%E4%BB%A5%E4%B8%8A%E3%81%AE%E5%9B%A0%E5%AD%90%E3%81%AB%E4%B8%80%E8%88%AC%E5%8C%96%E3%81%97%E3%81%9F%E3%82%82%E3%81%AE%E3%81%A7%E3%81%99%E3%81%8C%E3%80%81%E3%83%9A%E3%82%A2%E3%83%AF%E3%82%A4%E3%82%BA%E6%A4%9C%E5%AE%9A%E3%82%92%E5%AE%9F%E8%A1%8C%E3%81%97%E3%81%A6%E3%81%84%E3%82%8B%E5%A0%B4%E5%90%88%E3%80%81%E5%88%86%E6%9E%90%E3%81%AF%E3%82%A6%E3%82%A3%E3%83%AB%E3%82%B3%E3%82%AF%E3%82%BD%E3%83%B3%E6%A4%9C%E5%AE%9A%E3%81%AB%E3%81%99%E3%81%8E%E3%81%BE%E3%81%9B%E3%82%93%E3%80%82%20%EF%BC%88Fit%20Y%20by%20X%E3%81%A7%EF%BC%89%E3%83%8E%E3%83%B3%E3%83%91%E3%83%A9%E3%83%A1%E3%83%88%E3%83%AA%E3%83%83%E3%82%AF%26gt%3B%E3%83%8E%E3%83%B3%E3%83%91%E3%83%A9%E3%83%A1%E3%83%88%E3%83%AA%E3%83%83%E3%82%AF%E5%A4%9A%E9%87%8D%E6%AF%94%E8%BC%83%26gt%3B%E3%82%A6%E3%82%A3%E3%83%AB%E3%82%B3%E3%82%AF%E3%82%BD%E3%83%B3%E5%90%84%E3%83%9A%E3%82%A2%E3%82%92%E9%81%B8%E6%8A%9E%E3%81%97%E3%81%9F%E7%B5%90%E6%9E%9C%E3%81%AF%E6%AC%A1%E3%81%AE%E3%81%A8%E3%81%8A%E3%82%8A%E3%81%A7%E3%81%99%E3%80%82%3CSPAN%20style%3D%22text-decoration%3A%20underline%3B%22%3E%E3%81%84%E3%81%84%E3%81%88%3C%2FSPAN%3E%E5%A4%9A%E9%87%8D%E6%AF%94%E8%BC%83%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AB%E4%BF%AE%E6%AD%A3%E3%81%95%E3%82%8C%E3%81%BE%E3%81%97%E3%81%9F%E3%80%82%20%E3%81%93%E3%82%8C%E3%81%AF%E3%80%81%E5%8D%98%E3%81%AB%E3%80%8C%E5%90%84%E3%83%9A%E3%82%A2%E3%82%B9%E3%83%81%E3%83%A5%E3%83%BC%E3%83%87%E3%83%B3%E3%83%88%E3%81%AEt%E3%80%8D%E3%82%AA%E3%83%97%E3%82%B7%E3%83%A7%E3%83%B3%E3%81%AE%E3%83%8E%E3%83%B3%E3%83%91%E3%83%A9%E3%83%A1%E3%83%88%E3%83%AA%E3%83%83%E3%82%AF%E3%83%90%E3%83%BC%E3%82%B8%E3%83%A7%E3%83%B3%E3%81%A7%E3%81%99%E3%80%82%20%E3%81%93%E3%82%8C%E3%82%89%E3%81%AEp%E5%80%A4%E3%81%A7%E3%83%9C%E3%83%B3%E3%83%95%E3%82%A7%E3%83%AD%E3%83%BC%E3%83%8B%E8%A3%9C%E6%AD%A3%E3%82%92%E4%BD%BF%E7%94%A8%E3%81%99%E3%82%8B%E3%81%93%E3%81%A8%E3%82%82%E3%81%A7%E3%81%8D%E3%81%BE%E3%81%99%E3%81%8C%E3%80%81%E3%81%93%E3%82%8C%E3%81%AF%E5%A4%9A%E3%81%8F%E3%81%AE%E5%9B%A0%E5%AD%90%E3%83%AC%E3%83%99%E3%83%AB%E3%81%A7%E3%81%99%E3%81%90%E3%81%AB%E9%81%8E%E5%BA%A6%E3%81%AB%E4%BF%9D%E5%AE%88%E7%9A%84%E3%81%AB%E3%81%AA%E3%82%8A%E3%80%81Steel-Dwass%20All%20Pairs%EF%BC%88%E3%83%8E%E3%83%B3%E3%83%91%E3%83%A9%E3%83%A1%E3%83%88%E3%83%AA%E3%83%83%E3%82%AF%E5%A4%9A%E9%87%8D%E6%AF%94%E8%BC%83%E3%81%A7%E5%88%A9%E7%94%A8%E5%8F%AF%E8%83%BD%EF%BC%89%E3%81%AA%E3%81%A9%E3%81%AE%E3%82%88%E3%82%8A%E5%8A%B9%E7%8E%87%E7%9A%84%E3%81%AA%E5%88%86%E6%9E%90%E3%82%92%E4%BD%BF%E7%94%A8%E3%81%99%E3%82%8B%E3%81%93%E3%81%A8%E3%82%92%E3%81%8A%E5%8B%A7%E3%82%81%E3%81%97%E3%81%BE%E3%81%99%E3%80%82%E3%81%93%E3%82%8C%E3%81%AF%E3%80%81TukeyHSD%E3%81%AE%E3%83%8E%E3%83%B3%E3%83%91%E3%83%A9%E3%83%A1%E3%83%88%E3%83%AA%E3%83%83%E3%82%AF%E5%90%8C%E7%AD%89%E7%89%A9%E3%81%A7%E3%81%99%E3%80%82%20%E3%81%9D%E3%81%AE%E5%88%86%E6%9E%90%E3%81%A7%E8%BF%94%E3%81%95%E3%82%8C%E3%82%8Bp%E5%80%A4%E3%81%AF%E3%80%81Tukey%20HSD%E3%81%AE%E5%AE%9F%E8%A1%8C%E3%81%8B%E3%82%89%E7%94%9F%E6%88%90%E3%81%95%E3%82%8C%E3%81%9Fp%E5%80%A4%E3%81%A8%E5%90%8C%E3%81%98%E3%82%88%E3%81%86%E3%81%AB%E3%80%81%E4%BF%AE%E6%AD%A3%E3%81%95%E3%82%8C%E3%81%9Fp%E5%80%A4%E3%81%A7%E3%81%99%E3%80%82%3C%2FP%3E%3CP%3E%3C%2FP%3E%3CP%3E%E3%81%93%E3%82%8C%E3%81%8C%E3%81%8A%E5%BD%B9%E3%81%AB%E7%AB%8B%E3%81%A6%E3%81%B0%E5%B9%B8%E3%81%84%E3%81%A7%E3%81%99%E3%80%82%3C%2FP%3E%3CP%3E%3CSPAN%20style%3D%22font-size%3A%2010pt%3B%20line-height%3A%201.5em%3B%22%3E%3CBR%20%2F%3E%3C%2FSPAN%3E%3C%2FP%3E%3CP%3E%3CSPAN%20style%3D%22font-size%3A%2010pt%3B%20line-height%3A%201.5em%3B%22%3E%E3%82%B8%E3%83%A5%E3%83%AA%E3%82%A2%E3%83%B3%20%3C%2FSPAN%3E%3C%2FP%3E%3C%2FLINGO-BODY%3E
Choose Language Hide Translation Bar

Does JMP use Bonferroni correction for ANOVA and Krusal-Wallis?

Hi, I am trying to analyze a set of data with ANOVA and a separate set of data with a Kruskal-Wallis test using JMP. For my first set of data, I used an ANOVA and followed up with Tukey's HSD All-Pairs for post-hoc comparisons. Are the p-values that Tukey report lists as significant corrected values? Or do I need to apply the correction myself? Additionally, for a second test (Kruskal-Wallis), are the p-values compared with an adjusted significance level, or do I need to apply my own Bonferroni correction? Thanks!

1 ACCEPTED SOLUTION

Accepted Solutions
julian
Community Manager Community Manager

Re: Does JMP use Bonferroni correction for ANOVA and Krusal-Wallis?

Hi Opnightfall1771,

The Tukey HSD test returns p-values that have been corrected for the number of independent pair-wise comparisons that are possible given the number of factor levels -- so, those p-values may be interpreted directly and require no further corrections.

The Kruskal-Wallis test you mentioned is the generalization of the Wilcoxon (or Mann-Whitney test) to factors with more than 2 levels, however if you are performing pair-wise tests the analyses are just Wilcoxon tests. The results from selecting (in Fit Y by X) Nonparametric > Nonparametric Multiple Comparisons > Wilcoxon Each Pair are not corrected for multiple comparisons. This is simply the nonparametric version of the "Each Pair Student’s t" option. You could use Bonferroni corrections with those p-values, however this will quickly become overly conservative with many factor levels and you would be better off using a more efficient analysis, such as the Steel-Dwass All Pairs (available under Nonparametric Multiple Comparisons), which is the nonparametric equivalent of the Tukey HSD. The p-values returned in that analysis are corrected p-values, just like the p-values generated from running a Tukey HSD.

I hope this helps!


Julian

View solution in original post

3 REPLIES 3
julian
Community Manager Community Manager

Re: Does JMP use Bonferroni correction for ANOVA and Krusal-Wallis?

Hi Opnightfall1771,

The Tukey HSD test returns p-values that have been corrected for the number of independent pair-wise comparisons that are possible given the number of factor levels -- so, those p-values may be interpreted directly and require no further corrections.

The Kruskal-Wallis test you mentioned is the generalization of the Wilcoxon (or Mann-Whitney test) to factors with more than 2 levels, however if you are performing pair-wise tests the analyses are just Wilcoxon tests. The results from selecting (in Fit Y by X) Nonparametric > Nonparametric Multiple Comparisons > Wilcoxon Each Pair are not corrected for multiple comparisons. This is simply the nonparametric version of the "Each Pair Student’s t" option. You could use Bonferroni corrections with those p-values, however this will quickly become overly conservative with many factor levels and you would be better off using a more efficient analysis, such as the Steel-Dwass All Pairs (available under Nonparametric Multiple Comparisons), which is the nonparametric equivalent of the Tukey HSD. The p-values returned in that analysis are corrected p-values, just like the p-values generated from running a Tukey HSD.

I hope this helps!


Julian

Re: Does JMP use Bonferroni correction for ANOVA and Krusal-Wallis?

Julian,

Thank you so much for the detailed response! This is exactly what I was hoping to learn. Very helpful!

julian
Community Manager Community Manager

Re: Does JMP use Bonferroni correction for ANOVA and Krusal-Wallis?

You're welcome!

Julian

Recommended Articles