Hello @SeanCor,
Bienvenue dans la Communauté JMP !
Pour mieux comprendre comment gérer des contraintes dans la création de DoE avec JMP, je vous conseille la lecture de l'article de blog de @Jed_Campbell : Demystifying Factor Constraints - JMP User Community
Concernant vos questions, quelques réponses, questions et remarques :
- Si les concentrations des facteurs C et D peuvent varier de façon continue, alors il s'agit très vraisemblablement de facteurs continus. Les facteurs de type "discret" ne peuvent prendre que quelques valeurs ordonnées définies sur l'ensemble de la fourchette possible. Plus d'infos sur les types de facteurs ici : Factors (jmp.com)
- Quel est votre objectif avec ce plan ? Etudier les effets de ces deux facteurs de manière quantitative ? Avoir un modèle prédictif ? Souhaitez-vous analyser une possible interaction ou des effets quadratiques de ces facteurs ? Ces questions ne sont qu'un point de départ, mais vous permettront de mieux cerner quel type de plan est le plus adapté, et faire de bonnes décisions sur la construction et l'analyse du plan.
- Concernant votre contrainte relationnel entre C et D, vous pouvez l'ajouter dans plusieurs plateformes de construction de plan. J'ai pris l'exemple ici avec la plateforme Custom Design :
- Entrer vos réponses, facteurs et ranges :
- Dans la partie "Define Factor Constraints", cliquer sur "Specify Linear Constraints". Comme vous souhaitez que le ratio D/C soit supérieur ou égal à 4, une remise en forme de cette équation donne :
4 * :C + -1 * <= 0
Vous pouvez donc entrer cette contrainte dans la partie dédiée :
- Définissez le type d'effets que vous souhaitez estimer grâce à votre plan. Dans l'exemple ici, j'ai ajouté l'interaction entre C et D, les effets principaux de C et D ainsi que l'intercept sont entrés par défaut :
- Vous pouvez ensuite définir un nombre de réplicats, de points centraux, et vous avez également une certaine flexibilité sur le nombre de runs à réaliser, puis vous pouvez lancer la génération du plan "Make Design". Dans cet exemple, j'ai choisi 3 points centraux pour pouvoir évaluer si un effet quadratique est éventuellement présent et vérifier l'ajustement du modèle avec un test de Lack-Of-Fit, pour un nombre de runs recommandé égal à 12 :
A noter que dû à cette contrainte relationnelle, vos facteurs C et D ne sont plus indépendants. Estimer les effets individuels de chacun risque d'être plus difficile.
Il est important de bien distinguer si cette contrainte relationnelle est physiquement nécessaire pour réaliser les expériences (auquel cas elle doit être prise en compte dans le plan pour éviter de générer des expériences physiquement impossibles à réaliser ou dangereuses), ou si c'est une contrainte "préférentielle", où vous pensez avoir de bons résultats. Dans le second cas, mieux vaut enlever cette contrainte pour éviter tout biais au départ et avoir une vue sur votre espace expérimental la plus neutre et complète possible. Pour comprendre où, comment et pourquoi vous avez des résultats positifs dans votre espace expérimental, vous avez besoin de disposer également de résultats négatifs.
Finalement se pose également la question de savoir si les concentrations individuelles de vos facteurs constituent les informations d'intérêt, ou si c'est plutôt le ratio qui semble avoir un intérêt. Dans le second cas, vous pourriez combiner les facteurs C et D en un facteur (ratio), que vous feriez évoluer sur une certaine plage, et qui ne nécessiterait pas de plan d'expériences.
Voici le script utilisé pour la génération du plan d'expériences avec contrainte mentionné ici :
DOE(
Custom Design,
{Add Response( Maximize, "A", ., ., . ), Add Response( Maximize, "B", ., ., . ),
Add Factor( Continuous, 5, 9, "C", 0 ), Add Factor( Continuous, 10, 25, "D", 0 ),
Set Random Seed( 1047040825 ), Number of Starts( 55959 ),
Add Constraint( [4 -1 0] ), Add Term( {1, 0} ), Add Term( {1, 1} ),
Add Term( {2, 1} ), Add Term( {1, 1}, {2, 1} ), Center Points( 3 ),
Set Sample Size( 12 ), Optimality Criterion( "Make A-Optimal Design" ),
"A-Optimality Parameter Weights"n( [1 1 1 1] ), Simulate Responses( 0 ),
Save X Matrix( 0 ), Make Design, Set Run Order( Randomize ), Make Table}
);
Vous trouverez également en PJ le plan généré pour illustration de cette réponse (avec ajout dans la table d'une colonne calculée D/C pour que vous puissiez vérifier que toutes les expériences générées de cette méthode respectent votre contrainte).
En espérant que cette réponse vous aide,
Victor GUILLER
L'Oréal Data & Analytics
"It is not unusual for a well-designed experiment to analyze itself" (Box, Hunter and Hunter)