I have two sets of data with Y's linearly dependent on X's. I am trying to determine if the two sets of data are the same line or not.
I've looked at literature and there are 2 ways to do this.
1. Compare the slopes and see if they are equal; then compare the intercepts and see if they are equal. Using the t-test to determine if the slopes and intercepts are equal. If both the slopes and intercepts are equal the lines are coincident.
2. Create a single model and with a dummy variable (Z) where Z = 1 for the first data set and Z = 0 for the second data set. Which would give y = a + bX +cZ + dXZ. Where a, b,c, d are coefficients, X is the independent variable, and Z is the dummy variable. You then perform a multiple partial F-test to determine if the lines are coincident by comparing the model with the Z and XZ terms to the model without those terms.
Is there an easy way to do either of these tests with the JMP software?
So far I have fit a model with X, Z, and XZ (with the center polynomials checked). Looking at the effects tests the Z has an F ratio of 31 and Prob > F is <0.0001. The X*Z has an F ratio of 0.3178 and Prob > F is 0.5765. I am using 0.05 significance level with 21 and 18 degrees of freedom for the 2 sets of data.