Hi,
I'm super new to predictive modeling, I'm hoping someone can help.
I have a data set that has 7 variables, 4 of which are categorical (2 nominal, 2 ordinal). I have partitioned my data into training and validation. I also have a "new" data set for which I want to run my model on.
In my training/validation partitions I have ordinal variable x1, it has the following values: b, c, d, e, f. I would like to be able to account for variable x1 having the following values in the new data set: a,b, c, d, e, f, g, h, knowing a is better than b, and g and h are worse than f. What is the best approach for doing something like this? I though perhaps I could create extra dummy variable columns to account for the new values that will are in the new data set, but it doesn't work very well.
Also, I have nominal variable x2. The only information I have is that value "J" commands a higher price than "none". Is there a way to build this into a model? Is conditional formula the way to go?
Thanks in advance for any help!