cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 
Try the Materials Informatics Toolkit, which is designed to easily handle SMILES data. This and other helpful add-ins are available in the JMP® Marketplace
Choose Language Hide Translation Bar
mgerusdurand
Level IV

Bivariate analysis

Bonjour,

 

J'aimerai une confirmation sur l'analyse bivariée effectuée par JMP.

Lorsque seuls les paramètres X et Y sont entrés est-ce que l'analyse statistiques effectuée par la suite est de type paramétrique? Si oui est-ce qu'il est possible de faire une analyse de type non paramétrique? Comment procéder?

 

Merci d'avance

 

Marie

MGD
1 ACCEPTED SOLUTION

Accepted Solutions

Re: Bivariate analysis

Fit Y by X, more specifically Bivariate, is performing standard least squares regression. Regression does not assume that your data be normally distributed. But it does assume that the residuals (or errors) be normally distributed. This distinction is important because the raw data will have signals in it that could prevent it from being normally distributed. The X or explanatory variable should remove the effect of the signals. What is left (the errors or residuals) need to be normally distributed in order for all of the statistical inferences of the regression to be valid. That is why a regression analysis should always include an examination of the residuals as well. Bivariate will allow you to perform the residual analysis.

 

If the residuals are not normally distributed, there are a few options. One is to transform your response so that the residuals can be normally distributed. The Bivariate report offers several options to transform your response. They can be found under Fit Special from the red pop up menu.

 

Another option is to use Fit Model and specify a Generalized Linear Model. That will allow you to specify the distribution response. A generalized linear model is more than I can get into here, but might be worth you looking into for whatever your problem is.

Dan Obermiller

View solution in original post

4 REPLIES 4

Re: Bivariate analysis

Fit Y by X can perform four different types of analyses, depending on the modeling types of X and Y. Here are the different types of analyses based on the modeling types that are offered. This comes straight from the Fit Y by X dialog box:

Dan_Obermiller_0-1625507926185.png

Depending on the type of analysis, if the result is a parametric analysis, then the red triangle options will typically have a nonparametric option.

If you are more specific on what you are looking for, then the community may be able to provide more guidance.

 

Dan Obermiller
mgerusdurand
Level IV

Re: Bivariate analysis

Bonjour Dan,

 

Merci pour votre réponse. En effet je me suis mal exprimée. Je connais l'analyse et les possibilité du fit Y by X en finction du type de données. Je veux faire une analyse bivariée sur des données continues mais qui ne suivent pas une loi normale. 
Quand je lance le module fit Y by X je renseigne les champs Y et X et j'obtiens mon analyse. Mon pproblème est que je ne vois pas si JMP considère mes données comme paramétriques ou non paramétriques. Quand je clique sur le triangle rouge de l'analyse bivariée je ne peut pas sélectionné le type de mes données et je ne sais donc pas sur quoi se basent les statistiques obtenues.
Comment faire pour être sûre que l'analyse se fait bien en considérant que les données ne suivent pas une loi normale?

J'utilise JMP16.0.0

 

Merci pour votre aide

MGD

Re: Bivariate analysis

Fit Y by X, more specifically Bivariate, is performing standard least squares regression. Regression does not assume that your data be normally distributed. But it does assume that the residuals (or errors) be normally distributed. This distinction is important because the raw data will have signals in it that could prevent it from being normally distributed. The X or explanatory variable should remove the effect of the signals. What is left (the errors or residuals) need to be normally distributed in order for all of the statistical inferences of the regression to be valid. That is why a regression analysis should always include an examination of the residuals as well. Bivariate will allow you to perform the residual analysis.

 

If the residuals are not normally distributed, there are a few options. One is to transform your response so that the residuals can be normally distributed. The Bivariate report offers several options to transform your response. They can be found under Fit Special from the red pop up menu.

 

Another option is to use Fit Model and specify a Generalized Linear Model. That will allow you to specify the distribution response. A generalized linear model is more than I can get into here, but might be worth you looking into for whatever your problem is.

Dan Obermiller
mgerusdurand
Level IV

Re: Bivariate analysis

Thanks Dan,

 

All of this is very helpfull and will allow me to do the job I need to do!

I found and tested all your solutions and both of them give me my answer. I have a preference for the Fit Y by X then residuals analysis after fitting linear regression model!

 

 

MGD