Hi @ADouyon,
Concerning this new feature in JMP 17, it should be available soon (late October - beginning November), according to the JMP website : New in JMP 17 | Statistical Discovery Software from SAS
There is already a fascinating and brilliant white paper of this new functionality (Design Explorer) available here, which promises very interesting use cases in the selection of an optimal design: Choosing the Right Design - with an Assist from JMP's Design Explorer | JMP
1- Exactly ! Sorry for not being clear, this is exactly what I meant : I prefer to create several designs on my computer with JMP, and choose the most relevant one according to the experimental budget, goal and constraints, instead of going into the lab with the first design created and figuring out later that I may have forgotten some constraints or that my experiments are not all feasible/possible.
2- Sure ! When you have created several designs and the corresponding datatables for each design, you can go to DoE -> Design Diagnostics -> Compare Designs. There, you can select all the designs tables (max 5 designs in total, so 4 selected + the design from where you have clicked on "Compare Designs") and match the factors if they have different names in the tables (if they have the same names like in your screenshot (x1 and x1, ...), JMP will figure out that they are the same, so you don't need to match each factor individually). You should then have the same view as I had. More infos here : Evaluate Design Window (jmp.com)
3- The "Design Diagnostic" informations are values that need to be compared with other designs in order to see the strengths and weaknesses of each design. Each efficiency can go from 0 to 100. Different efficiencies are mentioned:
- D-efficiency is linked to parameter estimation precision, and is very important in screening/factorial designs, to precisely estimate the significance and effect size of effects in the model,
- G-efficiency is linked to the minimization of the prediction variance over the entire experimental space, and is very important in optimization design (focussed more on predictive performance rather than in causal explanations / statistical significance),
- A-efficiency is linked to the minimization and optimization of aliasing between effects ; the highest the A-efficiency, the lower and more precise (and unbiased) will be the estimation of regression coefficients.
More infos here : Design Diagnostics (jmp.com)
4- Very good question, and I don't have a clear answer. This is presumably because of coordinate exchange algorithm (used for custom design) and random starting/generating points for the design. As the design is generated from random points in the design space, the optimal repartition of points in the experimental space may change from one design generation to another. Hence you can see some slight changes in the values when generating again the design. You can manually change these values to the closest value (here 2) without changing the optimality of your design too much, or try generate again the design, eventually by augmenting the number of random starts and/or the design search time (in the red triangle close to "Custom Design" you will find "Number of Starts" and "Design Search Time").
Victor GUILLER
L'OrƩal Data & Analytics
"It is not unusual for a well-designed experiment to analyze itself" (Box, Hunter and Hunter)