JSL for the video.
picpath = ""; // "D:\Chales\pic\m";
//http://www.fractalforums.com/mandelbrot-and-julia-set/good-coordinates-for-mandelbrot-zooms/
//
//Points on the boundary of the Mandelbrot set generally have the most interesting orbits. The easiest boundary points to compute are:
//
//* the spike along the negative real axis
//* the boundary of the main cardioid: r = (1 - cos(theta))/2, x = r*cos(theta)+0.25, y = r*sin(theta)
//* the boundary of the period 2 disk: r = 0.25, x = r*cos(theta)-1, y = r*sin(theta)
eps = 1.6; // slightly outside
deep = 10;
steps = 8000;
angle = 3;
scale = 2; // <<<<<<< video made with 20, very slow
xsize = 192 * scale;
ysize = 108 * scale;
diag = Sqrt( xsize ^ 2 + ysize ^ 2 );
mat = J( ysize, xsize, . );
New Window( "mandelbrot", bb = Border Box( Text Box( "wait" ) ) );
Wait( .2 );
num = 1e6;
For( t = 0, t < steps, t += 1,
If( eps > 1e-9, eps *= .997 );
deep += .3;
angle += eps / 50;
radius = (1 - Cos( angle )) / 2 + eps;
x = radius * Cos( angle ) + 0.25;
y = radius * Sin( angle );
top = y - eps;
bottom = y + eps;
left = x - eps * xsize / ysize;
right = x + eps * xsize / ysize;
d = Floor( Min( 1e5, deep ) );
Parallel Assign( {d = d}, mat[r( top, bottom ), c( left, right )] = Mandelbrot( d, 4, c, r ) );
mat = mat / d;
red = mat ^ .5;
green = mat ^ 9;
both = Loc( red :* green == 1 );
red[both] = .1;
green[both] = .4;
blue = 1 - mat ^ .2;
blue[both] = .1;
img = New Image( "rgb", {red, green, blue} );
(bb << child) << delete;
bb << append( img );
num += 1;
If( picpath != "", img << saveimage( picpath || Char( num ) || ".png" ) );
bb << updatewindow;
Wait( 0 );
);