cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 
The Discovery Summit 2025 Call for Content is open! Submit an abstract today to present at our premier analytics conference.
Get the free JMP Student Edition for qualified students and instructors at degree granting institutions.
Choose Language Hide Translation Bar
View Original Published Thread

JMP in the Upstream 7: Optimizing your Python machine learning hyperparameters with JMP

Original session date: 3 March 2022

Topics covered: DOE, space filling, Python, machine learning

Speaker: Nick Shelton, Systems Engineer Manager

 

Optimizing machine learning hyperparameters is an important and sometimes fraught process. Variation in a single hyperparameter can greatly alter the efficacy of a model and when you have upwards of 40 hyperparameters, how can you possibly know the ideal settings? Historically, the procedure to identify the optimal settings has been around using either a grid or random framework to identify them. Herein, Nick Shelton walks us through the pitfalls of both methodologies and offers us a new solution: Space-filling Design of Experiment. He uses JMP Scripting Language (JSL) to call out directly to python to test multiple hyperparameters at once over the course of 30 iterations of the same model to rapidly identify the ideal hyperparameters for Python. Truly a time saving and, dare I say, headache saving tool any machine learning programmer ought to employ.

 

Accuracy_HP.jpg

Figure 1. The accuracy of a given machine learning algorithm when changing only a single parameter highlights the need to optimize hyperparameter selection.

 

Thumbnails.jpg

Figure 2. JMP's Surface Profiler allows for 3D representation of optimum hyperparameter settings

 

JitU_Shelton_2022-03.mp4
Video Player is loading.
Current Time 0:00
Duration 29:11
Loaded: 0%
Stream Type LIVE
Remaining Time 29:11
 
1x
    • Chapters
    • descriptions off, selected
    • captions off, selected
    • en (Main), selected
    (view in My Videos)