Showing results for 
Show  only  | Search instead for 
Did you mean: 
Choose Language Hide Translation Bar
Bayesian optimization add-in





  • JMP 15以降
  • 表示言語は、英語および日本語のみ




  1. 適当な実験回数で、Space Filling計画(空間充填計画)(もしくは、他の計画)を立てる。
  2. 実験を行う。
  3. 得られたデータから、Gauss過程モデル を推定する。
  4. データから推定されたGauss過程モデル g(x) (およびその共分散行列∑)より、適当な関数A(.)から計算されるA(g(x))が最大となる点 x*を求める。
  5. x*を実験点として追加して、ii に戻る。



B. Shahriari, K. Swersky, Z. Wang, R. P. Adams and N. de Freitas, "Taking the Human Out of the Loop: A Review of Bayesian Optimization," in Proceedings of the IEEE, vol. 104, no. 1, pp. 148-175, Jan. 2016, doi: 10.1109/JPROC.2015.2494218.




  1. すでに行った実験データが入力されたJMPのデータテーブルを開きます。※注意:現在のアドインで対応しているのは、目的変数Yが1つの場合のみとなります。また、説明変数Xは、連続尺度のみ指定できます。
  2. 「アドイン」>「Bayesian Optimization」を選びます。
  3. 列の設定、オプションの設定を行います。
  4. 分析が終わると、結果のウィンドウが表示されます。候補の実験点をテーブルに追加する場合は、「テーブルに行を追加」ボタンをクリックします。
  5. 次の実験を行う場合は、テーブルスクリプトの「ベイズ最適化アドインを実行」を実行すると同じ条件でベイズ最適化を行うことができます。









How to use this add-in

This add-in allows you to perform Bayesian optimization using Gaussian process model in JMP.

Bayesian optimization is one technique used when repeatedly performing sequential experiments and searching for an optimal solution.

Before conducting a real experiment, it is highly recommended to check whether it works well with some pseudo data. There are cases where it is impossible to find the optimal point well with few experiments.

  1. Open the JMP data table where you entered the experimental data you have already done.
  2. Select Add-Ins > Bayesian Optimization.
  3. Set columns and options.
  4. When the analysis is finished, a window will be displayed. If you want to add candidate experimental points to the table, click the “Add the row to table” button.
  5. If you want to repeat the Bayesian optimization, click “Run Bayesian Optimization Add-in” in the table script.

For more information, please see the attached pdf file. 



29 September, 2023 Version 1.3 : ナゲット効果を追加するためのチェックボックスを起動ウィンドウに追加。3次構造を指定したときに、分散の計算式が正しくなるように修正。

07 October, 2023 Version 1.3.1: 小数点がカンマであるときの問題を修正

08 December, 2023 Version 1.3.2: 配合因子がある場合、エラーが表示される問題を修正



Please provide me with a source for an article or book on the subject of Bayesian optimization



HI @Raaed,

Thank you for your comment. Here are some review articles I found;

S. Greenhill, S. Rana, S. Gupta, P. Vellanki and S. Venkatesh, "Bayesian Optimization for Adaptive Experimental Design: A Review," in IEEE Access, vol. 8, pp. 13937-13948, 2020, doi: 10.1109/ACCESS.2020.2966228.

B. Shahriari, K. Swersky, Z. Wang, R. P. Adams and N. de Freitas, "Taking the Human Out of the Loop: A Review of Bayesian Optimization," in Proceedings of the IEEE, vol. 104, no. 1, pp. 148-175, Jan. 2016, doi: 10.1109/JPROC.2015.2494218.


Thank you very much


@summers1985 コメントありがとうございます。残念ながら、現在のバージョンでは、XGBoostのアドインと連携させる機能はありません。もし、要望が多いようでしたら、アドインを作ることを検討したいと思います。

Thank you @yuichi_katsumur very useful add-in

Nice work @yuichi_katsumur !    @summers1985  , although there is not currently automatic integration with the XGBoost add-in, it is straightforward to run both add-ins manually.   If you run the XGBoost Add-In with the Autotune option, it will create a table of fitting results over a fast flexible filling design.   Make sure the performance metric you want is included in the table, save it to a JMP table, then use this table as input to the Bayesian Optimizataion add-in.  This lets you profile the current results and suggest potentially improved hyperparameter settings.   Iterate between the two add-ins as needed to find ranges of optimal hyperparameters.  I tend to prefer a manual approach like this as it let's you see what is happening across the whole hyperparameter space at each step.




Hello @Mae-Tetsu , Thank you for your question. Please try to set mixture column properties before performing the Bayesian optimization.

2023-09-20 092623.png


Please see the following page for detailed information for column properties. 




I would like to use the Bayesian optimization add-in for the design of mixing, but is there any way to do that?

Hello @KOKI , Thank you for your question. Please try to set the mixture column properties before running the Bayesian optimization. If you have any further questions, please let me know.



Thank you for your answer! I've been able to understand your suggestion by actually running Bayesian add-in with a sample data set. The issue has been resolved.