You have to decide what model you test for. JMP gives you the statistics for all three models. The critical values are not provided by JMP (in version 10), but can be found in a simple Google search (see below). Check out this example also: ADF Augmented Dickey-Fuller Unit Root Test - YouTube:
Pasted from <http://akson.sgh.waw.pl/~mrubas/EP/TabliceStatystyczneDF.doc> :
Critical Values for the Dickey-Fuller
Unit Root t-Test Statistics
Probability to the Right of Critical Value
Model Statistic N 1% 2.5% 5% 10% 90% 95% 97.5% 99%
Model I (no constant, no trend)
ADFtr 25 -2.66 -2.26 -1.95 -1.60 0.92 1.33 1.70 2.16
50 -2.62 -2.25 -1.95 -1.61 0.91 1.31 1.66 2.08
100 -2.60 -2.24 -1.95 -1.61 0.90 1.29 1.64 2.03
250 -2.58 -2.23 -1.95 -1.61 0.89 1.29 1.63 2.01
500 -2.58 -2.23 -1.95 -1.61 0.89 1.28 1.62 2.00
>500 -2.58 -2.23 -1.95 -1.61 0.89 1.28 1.62 2.00
Model II (constant, no trend)
ADFtr 25 -3.75 -3.33 -3.00 -2.62 -0.37 0.00 0.34 0.72
50 -3.58 -3.22 -2.93 -2.60 -0.40 -0.03 0.29 0.66
100 -3.51 -3.17 -2.89 -2.58 -0.42 -0.05 0.26 0.63
250 -3.46 -3.14 -2.88 -2.57 -0.42 -0.06 0.24 0.62
500 -3.44 -3.13 -2.87 -2.57 -0.43 -0.07 0.24 0.61
>500 -3.43 -3.12 -2.86 -2.57 -0.44 -0.07 0.23 0.60
Model III (constant, trend)
ADFtr 25 -4.38 -3.95 -3.60 -3.24 -1.14 -0.80 -0.50 -0.15
50 -4.15 -3.80 -3.50 -3.18 -1.19 -0.87 -0.58 -0.24
100 -4.04 -3.73 -3.45 -3.15 -1.22 -0.90 -0.62 -0.28
250 -3.99 -3.69 -3.43 -3.13 -1.23 -0.92 -0.64 -0.31
500 -3.98 -3.68 -3.42 -3.13 -1.24 -0.93 -0.65 -0.32
>500 -3.96 -3.66 -3.41 -3.12 -1.25 -0.94 -0.66 -0.33