cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

Discussions

Solve problems, and share tips and tricks with other JMP users.
%3CLINGO-SUB%20id%3D%22lingo-sub-239588%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3Epositive%20Logwahrscheinlichkeiten%20und%20negative%20AICs%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-239588%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EMir%20ist%20aufgefallen%2C%20dass%20JMP%20ausnahmslos%20positive%20LLs%20und%20negative%20AICs%20meldet%2C%20zum%20Beispiel%20%22-2LL%20%3D%20-1406%2C88%22%20oder%20%22AICc%20%3D%20-1451%2C534%22.%20Das%20ergibt%20keinen%20Sinn%2C%20oder%3F%20LL%20muss%20per%20Definition%20negativ%20sein%3B%20AIC%20kann%20grunds%C3%A4tzlich%20negativ%20sein%2C%20ist%20aber%20bei%20niedrigen%20LLs%20und%20geringer%20Parameterzahl%20meist%20positiv.%3C%2FP%3E%3CP%3E%C3%9Cbersehe%20ich%20hier%20etwas%20Grunds%C3%A4tzliches%3F%3C%2FP%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3CP%3EVielen%20Dank!%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-272237%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20positive%20Logwahrscheinlichkeiten%20und%20negative%20AICs%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-272237%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EBitte%20l%C3%B6schen%20Sie%20diesen%20Beitrag%20nicht.%20Diese%20Diskussion%20ist%20auch%20f%C3%BCr%20andere%20Benutzer%20n%C3%BCtzlich%2C%20die%20m%C3%B6glicherweise%20Probleme%20haben%2C%20-2L%20zu%20finden.%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-272232%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20positive%20Logwahrscheinlichkeiten%20und%20negative%20AICs%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-272232%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EDas%20war%20in%20JMP%2010.%20Ich%20denke%2C%20es%20ist%20bei%20JMP%2014%20anders%2C%20kann%20ich%20%C3%BCberpr%C3%BCfen.%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-272190%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20positive%20Logwahrscheinlichkeiten%20und%20negative%20AICs%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-272190%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EHi%2C%3C%2FP%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3CP%3EK%C3%B6nnen%20Sie%20bitte%20erkl%C3%A4ren%2C%20wo%20die%20-2LL%20gemeldet%20werden%3F%20Ich%20sehe%20nur%20endg%C3%BCltige%20AICc-Werte%20auf%20meiner%20Seite.%20Ich%20bin%20in%20JMP%2014.%3C%2FP%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3CP%3EUPDATE%3A%20Macht%20nichts%2C%20ich%20habe%20es%20herausgefunden%20(ich%20musste%20ein%20GLM%20machen)%20und%20jetzt%20kann%20ich%20nicht%20herausfinden%2C%20wie%20ich%20diesen%20Beitrag%20l%C3%B6schen%20kann.%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-239847%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20positive%20Logwahrscheinlichkeiten%20und%20negative%20AICs%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-239847%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EEs%20stammt%20aus%20einem%20MLE-Verfahren.%20Die%20Sch%C3%A4tzung%20minimiert%20-2L.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EJa%2C%20Sie%20k%C3%B6nnen%20die%20doppelte%20Differenz%20zwischen%20der%20logarithmischen%20Wahrscheinlichkeit%20unter%20der%20Null-%20und%20der%20alternativen%20Hypothese%20f%C3%BCr%20einen%20LRT-Chi-Quadrat-Test%20verwenden.%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-239812%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20positive%20Logwahrscheinlichkeiten%20und%20negative%20AICs%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-239812%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EAhh%2C%20verstanden.%20Diese%20LL%20stammt%20nicht%20aus%20einem%20ML-Verfahren.%20Dann%20meine%20letzte%20Frage%3A%20Kann%20ich%20diese%20Werte%20trotzdem%20in%20einem%20Log-Ratio-Test%20verwenden%20oder%20sind%20sie%20daf%C3%BCr%20nicht%20gut%3F%3CBR%20%2F%3E%20Danke%20f%C3%BCr%20Ihre%20Hilfe!%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-239811%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20positive%20Logwahrscheinlichkeiten%20und%20negative%20AICs%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-239811%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EHier%20ist%20die%20Berechnung%20von%20AICc%20f%C3%BCr%20eine%20kontinuierliche%20Antwort%3A%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Screen%20Shot%202019-12-27%20at%207.55.36%20AM.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Screen%20Shot%202019-12-27%20at%207.55.36%20AM.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Screen%20Shot%202019-12-27%20at%207.55.36%20AM.png%22%20style%3D%22width%3A%20999px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F20825i3249957C109A3239%2Fimage-size%2Flarge%3Fv%3Dv2%26amp%3Bpx%3D999%22%20role%3D%22button%22%20title%3D%22Screen%20Shot%202019-12-27%20at%207.55.36%20AM.png%22%20alt%3D%22Screen%20Shot%202019-12-27%20at%207.55.36%20AM.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EDer%20erste%20Term%20ist%20-2L.%20Wenn%20Sie%20also%20einen%20kleinen%20SSE%20haben%20(gute%20Passform)%2C%20dann%20kann%20-2L%20negativ%20sein.%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-239794%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20positive%20Logwahrscheinlichkeiten%20und%20negative%20AICs%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-239794%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3E%3CSPAN%3EVollst%C3%A4ndiges%20Modell%3C%2FSPAN%3E%3CSPAN%3E%20-LogLikelihood%20%3D%3C%2FSPAN%3E%3CSPAN%3E%20-1459.5116.%20Dh%20LogLikelihood%20%3D%201459%2C5116.%20%26gt%3B0.%20Kann%20nicht%20sein.%20Entweder%20ist%20das%20kein%20LL%2C%20oder%20es%20ist%2C%20aber%20da%20ist%20ein%20Minus%20drin%2C%20das%20nicht%20da%20sein%20sollte.%3C%2FSPAN%3E%3C%2FP%3E%3CP%3E%3CSPAN%3EOder%20ich%20verpasse%20etwas%20Gro%C3%9Fes.%3C%2FSPAN%3E%3C%2FP%3E%3CP%3E%26nbsp%3B%3C%2FP%3E%3CP%3E%3CSPAN%3EVielen%20Dank%3C%2FSPAN%3E%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-239613%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20positive%20Logwahrscheinlichkeiten%20und%20negative%20AICs%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-239613%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EIch%20sehe%20nichts%20Falsches%20an%20diesen%20Ergebnissen.%20Wenn%20Sie%20sich%20Sorgen%20%C3%BCber%20den%20negativen%20AICc%20machen%2C%20passiert%20das%20st%C3%A4ndig.%20Hier%20gibt%20es%20wirklich%20keinen%20Ma%C3%9Fstab.%20Kleinere%20AICc%20schl%C3%A4gt%20immer%20ein%20besseres%20Modell%20vor.%20Ein%20Modell%20mit%20AICc%20%3D%201000%20ist%20also%20besser%20als%20ein%20Modell%20mit%20AICc%20%3D%201200.%20Ein%20Modell%20mit%20AICc%20%3D%20-1250%20ist%20besser%20als%20ein%20Modell%20mit%20AICc%20%3D%20-1200.%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-239608%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20positive%20Logwahrscheinlichkeiten%20und%20negative%20AICs%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-239608%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EVielen%20Dank!%20In%20dem%20von%20Ihnen%20angegebenen%20Beispiel%20ist%20alles%20%22gut%22.%20LL%20negativ%20BIC%20und%20AIC%20positiv.%20Beantwortet%20also%20meine%20Frage%20nicht%20ganz.%20Ich%20sehe%20wie%3CBR%20%2F%3E%3CBR%20%2F%3E%20Sollte%20ich%20also%20davon%20ausgehen%2C%20dass%20dies%20ein%20Typ%20ist%20(Minus%20sollte%20nicht%20da%20sein%2C%20siehe%20mit%20%26gt%3B%26gt%3B%26gt%3B%26gt%3B%20markierte%20Zeilen)%20in%20einem%20Bericht%20wie%20diesem%3F%3CBR%20%2F%3E%3CBR%20%2F%3E%20Verallgemeinerte%20lineare%20Modellanpassung%3CBR%20%2F%3E%20Durch%20Maximum%20Likelihood%20gesch%C3%A4tzter%20%C3%9Cberdispersionsparameter%3CBR%20%2F%3E%20Antwort%3A%20O2Cons_ugO2%2FmgWW%3CBR%20%2F%3E%20Verteilung%3A%20Normal%3CBR%20%2F%3E%20Link%3A%20Identit%C3%A4t%3CBR%20%2F%3E%20Sch%C3%A4tzmethode%3A%20Maximale%20Wahrscheinlichkeit%3CBR%20%2F%3E%20Beobachtungen%20(oder%20Sum%20Wgts)%20%3D%20369%3CBR%20%2F%3E%3CBR%20%2F%3E%3CBR%20%2F%3E%20Regressionsdiagramm%3CBR%20%2F%3E%3CBR%20%2F%3E%3CBR%20%2F%3E%3CBR%20%2F%3E%20Gesamtmodelltest%3CBR%20%2F%3E%3CBR%20%2F%3E%20%26gt%3B%26gt%3B%26gt%3B%26gt%3BModell%20-LogLikelihood%20LR%20ChiSquare%20DF%20Prob%26gt%3BChiSq%3CBR%20%2F%3E%20%26gt%3B%26gt%3B%26gt%3B%26gt%3BDifferenz%2060%2C566153%20121%2C1323%201%20%26lt%3B.0001%3CBR%20%2F%3E%20%26gt%3B%26gt%3B%26gt%3B%26gt%3BVoll%20-1459.5116%3CBR%20%2F%3E%20%26gt%3B%26gt%3B%26gt%3B%26gt%3BReduziert%20-1398%2C9455%3CBR%20%2F%3E%3CBR%20%2F%3E%3CBR%20%2F%3E%3CBR%20%2F%3E%20Statistik%20zur%20Anpassungsg%C3%BCte%20ChiQuadrat-DF-Prob%26gt%3BChiQuadrat-%C3%9Cberdispersion%3CBR%20%2F%3E%20Pearson%200%2C0079%20367%201%2C0000%200%2C0000%3CBR%20%2F%3E%20Abweichung%200%2C0079%20367%201%2C0000%3CBR%20%2F%3E%3CBR%20%2F%3E%3CBR%20%2F%3E%3CBR%20%2F%3E%20AICc%3CBR%20%2F%3E%20-2912.958%3CBR%20%2F%3E%3CBR%20%2F%3E%3CBR%20%2F%3E%3CBR%20%2F%3E%3CBR%20%2F%3E%3CBR%20%2F%3E%20Wirkungstests%3CBR%20%2F%3E%3CBR%20%2F%3E%20Quelle%20DF%20LR%20ChiQuadrat%20Prob%26gt%3BChiQuadrat%3CBR%20%2F%3E%20Test%20T%201%20121%2C13231%20%26lt%3B%200%2C0001%3CBR%20%2F%3E%3CBR%20%2F%3E%3CBR%20%2F%3E%3CBR%20%2F%3E%3CBR%20%2F%3E%20Parametersch%C3%A4tzungen%3CBR%20%2F%3E%3CBR%20%2F%3E%20Term%20Sch%C3%A4tzung%20Std.%20Fehler%20LR%20ChiQuadrat%20Prob%26gt%3BChiQuadrat%20Unteres%20CL%20Oberes%20CL%3CBR%20%2F%3E%20Schnittpunkt%200%2C001544%200%2C0007616%204%2C0872942%200%2C0432%200%2C0000474%200%2C0030406%3CBR%20%2F%3E%20AssayT%200%2C0003546%200%2C0000296%20121%2C13231%20%26lt%3B%200%2C0001%200%2C0002964%200%2C0004127%3CBR%20%2F%3E%3CBR%20%2F%3E%3CBR%20%2F%3E%3CBR%20%2F%3E%3CBR%20%2F%3E%20Studentisiertes%20Abweichungsresiduum%20nach%20Vorhergesagt%3CBR%20%2F%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-239602%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EBetreff%3A%20positive%20Logwahrscheinlichkeiten%20und%20negative%20AICs%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-239602%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3ESie%20haben%20m%C3%B6glicherweise%20keine%20Ausnahmen%20gesehen%2C%20aber%20sie%20k%C3%B6nnen%20auftreten.%20Sie%20haben%20Recht%2C%20dass%20die%20Log-Wahrscheinlichkeit%20immer%20negativ%20ist%2C%20da%20die%20Wahrscheinlichkeit%20immer%200%20bis%201%20betr%C3%A4gt.%20Ebenso%20ist%20-2L%20immer%20positiv.%20AICc%20kann%20jedoch%20negativ%20oder%20positiv%20sein.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EZum%20Beispiel%2C%3C%2FP%3E%0A%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22Screen%20Shot%202019-12-23%20at%2011.00.22%20AM.png%22%20style%3D%22width%3A%20555px%3B%22%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Screen%20Shot%202019-12-23%20at%2011.00.22%20AM.png%22%20style%3D%22width%3A%20555px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22Screen%20Shot%202019-12-23%20at%2011.00.22%20AM.png%22%20style%3D%22width%3A%20555px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.jmp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F20785iA73F363EE37D46B0%2Fimage-size%2Flarge%3Fv%3Dv2%26amp%3Bpx%3D999%22%20role%3D%22button%22%20title%3D%22Screen%20Shot%202019-12-23%20at%2011.00.22%20AM.png%22%20alt%3D%22Screen%20Shot%202019-12-23%20at%2011.00.22%20AM.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FSPAN%3E%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%3C%2FLINGO-BODY%3E
Choose Language Hide Translation Bar
l_yampolsky
Level III

positive loglikelihoods and negative AIC's

I noticed that JMP invariably reports positive LLs and negative AICs, for example "-2LL = -1406.88" or "AICc =  -1451.534". This does not make sense, does it? LL must be negative by definition; AIC can in principle be negative, but with low LLs and low number of parameters it usually is positive.

Am I missing something fundamental here?

 

Thanks!

1 ACCEPTED SOLUTION

Accepted Solutions

Re: positive loglikelihoods and negative AIC's

It is from a MLE procedure. The estimation minimizes -2L.

 

Yes, you can use twice the difference between the log likelihood under the null and the alternative hypotheses for a LRT chi square test.

View solution in original post

10 REPLIES 10

Re: positive loglikelihoods and negative AIC's

You may have not seen exceptions but they can happen. You are correct that the log-likelihood is always negative because the likelihood is always 0 to 1. Similarly, the -2L is always positive. AICc, though, can be negative or positive.

 

For example,

Screen Shot 2019-12-23 at 11.00.22 AM.png

 

 

l_yampolsky
Level III

Re: positive loglikelihoods and negative AIC's

Thanks! In the example you give everything is "good". LL negative BIC and AIC positive. So it does not quite answer my question. I see how

So should I assume that this is a type (minus should not be there, see lines marked with >>>>) in a report like this?

Generalized Linear Model Fit
Overdispersion parameter estimated by Maximum Likelihood
Response: O2Cons_ugO2/mgWW
Distribution: Normal
Link: Identity
Estimation Method: Maximum Likelihood
Observations (or Sum Wgts) = 369


Regression Plot



Whole Model Test

>>>>Model -LogLikelihood L-R ChiSquare DF Prob>ChiSq
>>>>Difference 60.566153 121.1323 1 <.0001
>>>>Full -1459.5116
>>>>Reduced -1398.9455



Goodness Of Fit Statistic ChiSquare DF Prob>ChiSq Overdispersion
Pearson 0.0079 367 1.0000 0.0000
Deviance 0.0079 367 1.0000



AICc
-2912.958





Effect Tests

Source DF L-R ChiSquare Prob>ChiSq
assayT 1 121.13231 <.0001




Parameter Estimates

Term Estimate Std Error L-R ChiSquare Prob>ChiSq Lower CL Upper CL
Intercept 0.001544 0.0007616 4.0872942 0.0432 0.0000474 0.0030406
assayT 0.0003546 0.0000296 121.13231 <.0001 0.0002964 0.0004127




Studentized Deviance Residual by Predicted

Re: positive loglikelihoods and negative AIC's

I don't see anything wrong with these results. If you are concerned about the negative AICc, that happens all the time. There really isn't any scale here. Smaller AICc always suggests a better model. So a model with AICc = 1000 is better than a model with AICc = 1200. A model with AICc = -1250 is better than a model with AICc = -1200.

l_yampolsky
Level III

Re: positive loglikelihoods and negative AIC's

Full model -LogLikelihood = -1459.5116. I.e. LogLikelihood = 1459.5116. >0. Cannot be. Either this is not LL, or it is, but there is a minus in there that should not be there. 

Or I am missing something big way.

 

Thanks

Re: positive loglikelihoods and negative AIC's

Here is the computation of AICc for a continuous response:

 

Screen Shot 2019-12-27 at 7.55.36 AM.png

 

The first term is -2L. So if you have a small SSE (a good fit), then -2L can be negative.

l_yampolsky
Level III

Re: positive loglikelihoods and negative AIC's

Ahh, got it. This LL is not from a ML procedure. Then my last question: can I still use these values in a log-ratio test or are they not good for that?
Thanks for your help!

Re: positive loglikelihoods and negative AIC's

It is from a MLE procedure. The estimation minimizes -2L.

 

Yes, you can use twice the difference between the log likelihood under the null and the alternative hypotheses for a LRT chi square test.

juneshres
Level II

Re: positive loglikelihoods and negative AIC's

Hi, 

 

Can you please explain where the -2LL are reported? I'm only seeing final AICc values on my end. I'm in JMP 14.

 

UPDATE: Never mind, I figured it out (I needed to do a GLM) and now I can't figure out how to delete this post. 

l_yampolsky
Level III

Re: positive loglikelihoods and negative AIC's

This was in JMP 10. I think it is different on JMP 14, can check.

Recommended Articles