I do not want to seem 'picky' but we use terms with specific meanings. I don't think that it has anything to do with the model assumptions, but it might have something to do with the model parameterization, the categorical predictor in particular. I don't know how the model parameters are represented for estimation in the R object that you are using. I do know how JMP parameterizes categorical predictors.
Here is the place to discover the JMP parameterization for categorical factors in JMP 12. (The parameterization in JMP 13 is the same, but the location in the documentation changes!)
Select Help > Books > Fitting Linear Models > Appendix A: Statistical Details > The Factor Models. This section describes the coding for both nominal and ordinal predictor levels. The effects coding used in JMP is different that than the coding used in some SAS procedures, such as PROC GLM, as you will see. It might be different than the coding used in your R object.
I hope that this information will help resolve the differences that you have observed.