cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 
The Discovery Summit 2025 Call for Content is open! Submit an abstract today to present at our premier analytics conference.
See how to use JMP Live to centralize and share reports within groups. Webinar with Q&A April 4, 2pm ET.
Choose Language Hide Translation Bar
View Original Published Thread

Partial Least Squares VIP coefficients in JMP pro

irinastl
Level II

Hello,

I am struggling to understand the difference between NIPALS and SIMPLS, and why those two give me such a low VIP coefficients for my Y with same set of Xs (I have 1000 of them). I have 3 levels within X: I expected different correlation coefficients for all 3, but they are very closed to each other. Am I using PLS correctly? 

2 REPLIES 2
ih
Super User (Alumni) ih
Super User (Alumni)


Re: Partial Least Squares VIP coefficients in JMP pro

Here you are predicting all Y variables at the same time so I believe the VIP is related to the importance of predicting any and all X and Y variables.  If you run the analysis three times with one Y variable each time you will see different VIP values for each X variable.

Peter_Bartell
Level VIII


Re: Partial Least Squares VIP coefficients in JMP pro

Of course you will get different predictor variable results by using PLS in series, once for each response all by itself, compared to using PLS incorporating all the responses simultaneously. One of the unique and valuable characteristics of the PLS approach is to leverage correlation/covariance strutures among BOTH the x and y variables for those situations where using other regression based methods are problematic. One of the basic attractions of PLS is dimensionality reduction hence the idea of leveraging the latent structures that can be found using these methods. A great reference for PLS is:

 

https://www.sas.com/store/books/categories/usage-and-reference/discovering-partial-least-squares-wit...