cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

Discussions

Solve problems, and share tips and tricks with other JMP users.
%3CLINGO-SUB%20id%3D%22lingo-sub-264079%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3EACP%2FAnalyse%20factorielle%20avec%20donn%C3%A9es%20ordinales%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-264079%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EJ'ai%20un%20ensemble%20de%20donn%C3%A9es%20de%20sciences%20sociales%20qui%20contient%20de%20nombreuses%20variables%20cat%C3%A9gorielles%20ordinales%20avec%26gt%3B%202%20niveaux%20qui%20sont%20li%C3%A9s%20%C3%A0%20des%20scores%20comme%201%202%203%20..%3C%2FP%3E%3CP%3EOn%20m'a%20demand%C3%A9%20s'il%20existait%20des%20corr%C3%A9lations%20entre%20ces%20variables%20ordinales%2C%20alors%20posez-vous%20la%20question%26nbsp%3B%3A%20comment%20effectuer%20une%20corr%C3%A9lation%20et%20une%20analyse%20ACP%2Ffactorielle%20avec%20ce%20type%20de%20donn%C3%A9es%26nbsp%3B%3F%20Merci%20pour%20l'aide!%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-265779%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3ERe%26nbsp%3B%3A%20Analyse%20ACP%2FFacteur%20avec%20donn%C3%A9es%20ordinales%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-265779%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3ELa%20dimension%20dans%20MCA%20est%20la%20m%C3%AAme%20que%20dans%20PCA.%20Les%20donn%C3%A9es%20continues%20pour%20le%20PCA%20ici%20sont%20les%20distances%20chi%20carr%C3%A9%20du%20MCA%20et%20mises%20%C3%A0%20l'%C3%A9chelle%20avant%20le%20PCA.%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-265772%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3ERe%26nbsp%3B%3A%20Analyse%20ACP%2FFacteur%20avec%20donn%C3%A9es%20ordinales%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-265772%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EMCA%20fonctionne%20bien%2C%20excellent%20outil%20pour%20trouver%20des%20associations%26nbsp%3B!%20Je%20ne%20sais%20pas%20comment%20interpr%C3%A9ter%20%22dimension%22%20ce%20qui%20signifie%20un%20score%20faible%20ou%20%C3%A9lev%C3%A9%20sur%20la%20dimension%201%20ou%202%26nbsp%3B%3F%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-265265%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3ERe%26nbsp%3B%3A%20Analyse%20ACP%2FFacteur%20avec%20donn%C3%A9es%20ordinales%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-265265%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3ELCA%20regroupe%20les%20lignes%20en%20fonction%20de%20la%20fr%C3%A9quence.%20L'analyse%20s%C3%A9mantique%20latente%20classe%20les%20niveaux%20(variables).%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-265241%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3ERe%26nbsp%3B%3A%20Analyse%20ACP%2FFacteur%20avec%20donn%C3%A9es%20ordinales%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-265241%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EMerci%20pour%20l'article%20sur%20MCA%2C%20que%20diriez-vous%20de%20Latent%20Class%20Analyis%3B%20est-ce%20une%20approche%20%C3%A9quivalente%20pour%20classer%20les%20variables%20ordinales%20%3F%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-265151%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3ERe%26nbsp%3B%3A%20Analyse%20ACP%2FFacteur%20avec%20donn%C3%A9es%20ordinales%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-265151%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EJe%20suis%20d'accord%20qu'il%20y%20a%20un%20malentendu.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EVeuillez%20voir%20ceci%3CA%20href%3D%22https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FMultiple_correspondence_analysis%22%20target%3D%22_self%22%20rel%3D%22nofollow%20noopener%20noreferrer%22%3E%20article%3C%2FA%3E%20.%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-265090%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3ERe%26nbsp%3B%3A%20Analyse%20ACP%2FFacteur%20avec%20donn%C3%A9es%20ordinales%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-265090%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EJe%20pense%20qu'il%20y%20a%20un%20malentendu%20li%C3%A9%20au%20titre%20de%20ma%20discussion%20faisant%20r%C3%A9f%C3%A9rence%20aux%20donn%C3%A9es%20ordinales%3B%20cela%20peut%20%C3%AAtre%20trait%C3%A9%20avec%20une%20correspondance%20multiple.%3C%2FP%3E%3CP%3ECependant%2C%20en%20plus%20des%20variables%20ordinales%2C%20mon%20ensemble%20de%20donn%C3%A9es%20contient%20%C3%A9galement%20de%20nombreux%20facteurs%20qui%20sont%20des%20nombres%20discrets%20comme%20les%20nombres%20(%23%20d%C3%A9fauts)%20et%20les%20scores%20(notes%201%20%C3%A0%205)%2C%20donc%20ma%20question%20est%20de%20savoir%20si%20l'analyse%20factorielle%20de%20ces%20variables%20num%C3%A9riques%20discr%C3%A8tes%20est%20possible%20afin%20de%20trouver%20le%20structure%20de%20corr%C3%A9lation%20sous-jacente%26nbsp%3B%3F%20Je%20suis%20confus%20au%20sujet%20de%20la%20corr%C3%A9lation%20entre%20ces%20variables%20discr%C3%A8tes%26nbsp%3B%3A%20lorsque%20je%20fais%20un%20trac%C3%A9%20multivari%C3%A9%2C%20les%20corr%C3%A9lations%20ont%20l'air%20terribles...%20d'un%20autre%20c%C3%B4t%C3%A9%2C%20lorsque%20je%20consulte%20la%20carte%20des%20couleurs%2C%20de%20nombreux%20points%20rouges%20et%20roses%20apparaissent%20indiquant%20une%20corr%C3%A9lation%26nbsp%3B%3F%20Comment%20analyser%20correctement%20ces%20facteurs%20discrets%20%3F%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-265053%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3ERe%26nbsp%3B%3A%20Analyse%20ACP%2FFacteur%20avec%20donn%C3%A9es%20ordinales%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-265053%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EVous%20pouvez%20avoir%20des%20comptages%20de%20niveaux%20discrets.%20Les%20variables%20sont-elles%20cat%C3%A9gorielles%26nbsp%3B%3F%20Comptez-vous%20ces%20niveaux%20%3F%20Il%20s'agit%20toujours%20d'une%20analyse%20de%20donn%C3%A9es%20cat%C3%A9gorielles.%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-265039%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3ERe%26nbsp%3B%3A%20Analyse%20ACP%2FFacteur%20avec%20donn%C3%A9es%20ordinales%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-265039%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EOk%20si%20les%20nombres%20odinaux%20peuvent%20aussi%20%C3%AAtre%20des%20comptes%20ou%20des%20scores%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-265016%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3ERe%26nbsp%3B%3A%20Analyse%20ACP%2FFacteur%20avec%20donn%C3%A9es%20ordinales%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-265016%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3ENon%2C%20l'ACP%20ou%20l'analyse%20factorielle%20ne%20sont%20pas%20appropri%C3%A9es%20pour%20analyser%20vos%20donn%C3%A9es%20ordinales.%20Les%20valeurs%20ne%20sont%20pas%20num%C3%A9riques.%20Ce%20ne%20sont%20que%20des%20%C3%A9tiquettes.%20Ils%20pourraient%20%C3%AAtre%20%22A%22%20%C3%A0%20%22E%22.%20Vous%20n'utiliseriez%20pas%20l'ACP%20ou%20l'analyse%20factorielle%20avec%20%22A%22%20%C3%A0%20%22E%22%2C%20n'est-ce%20pas%26nbsp%3B%3F%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-264998%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3ERe%26nbsp%3B%3A%20Analyse%20ACP%2FFacteur%20avec%20donn%C3%A9es%20ordinales%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-264998%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3EMarc%2C%20merci%20pour%20votre%20contribution%2C%20cette%20analyse%20des%20correspondances%20multiples%20fonctionne%20bien%20pour%20les%20donn%C3%A9es%20cat%C3%A9gorielles%26nbsp%3B!%3C%2FP%3E%3CP%3EJ'ai%20aussi%20des%20donn%C3%A9es%20num%C3%A9riques%20discr%C3%A8tes%20telles%20que%201%202%204%205%20.%20Est-il%20possible%20d'effectuer%20une%20analyse%20ACP%2Ffactorielle%20fiable%20sur%20de%20telles%20donn%C3%A9es%2C%20c'est-%C3%A0-dire%20que%20l'analyse%20factorielle%20donnera-t-elle%20un%20groupement%20correct%20des%20effets%20discrets%20corr%C3%A9l%C3%A9s%20%3F%20N'est-il%20pas%20pr%C3%A9f%C3%A9rable%20d'utiliser%20l'approche%20de%20corr%C3%A9lation%20de%20Spearman%20%3F%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-264096%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3ERe%26nbsp%3B%3A%20Analyse%20ACP%2FFacteur%20avec%20donn%C3%A9es%20ordinales%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-264096%22%20slang%3D%22en-US%22%20mode%3D%22NONE%22%3E%3CP%3ELes%20corr%C3%A9lations%20concernent%20les%20variables%20continues.%20Les%20associations%20sont%20pour%20les%20variables%20cat%C3%A9gorielles.%3C%2FP%3E%0A%3CP%3E%26nbsp%3B%3C%2FP%3E%0A%3CP%3EJe%20vous%20sugg%C3%A8re%20d'essayer%20l'analyse%20des%20correspondances%20multiples.%20Voir%20les%20chapitres%20du%3CSTRONG%3E%20Aide%20%26gt%3B%20Biblioth%C3%A8que%20de%20documentation%20JMP%20%26gt%3B%20M%C3%A9thodes%20multivari%C3%A9es%3C%2FSTRONG%3E%20guide.%3C%2FP%3E%3C%2FLINGO-BODY%3E
Choose Language Hide Translation Bar
frankderuyck
Level VI

PCA/Factor Analysis with ordinal data

I have a dataset from social sciences that contains many ordinal categorical variables with > 2 levels which are linked to scores like 1 2 3..

I was asked if there are correlations between these ordinal variables so question: how to carry out correlation and PCA/Factor Analysis with this kind of data? Thanks for help!

11 REPLIES 11
frankderuyck
Level VI

Re: PCA/Factor Analysis with ordinal data

MCA works fine, great tool for finding associations! I only don't know how to inerpret "dimension" what means a low or high score on dimension 1 or 2? 

Re: PCA/Factor Analysis with ordinal data

The dimension in MCA is the same as in PCA. The continuous data for the PCA here are the chi square distances from MCA and scaled before the PCA.

Recommended Articles